基于熵权-灰色关联-topsis的综合评价模型

对于熵权、灰色关联和TOPSIS三个方法的原理:

熵权法+topsis+灰色关联度综合算法 matlab语言代码获取戳此处

1. 熵权法(Entropy Weight Method):
熵权法是一种基于信息熵的权重确定方法。它通过计算指标的信息熵来评估指标的重要性,进而确定权重。具体步骤如下:
- 计算每个指标的信息熵,公式为:$E_i = -\sum_{j=1}^{n} \frac{p_{ij}}{\log(p_{ij})}$,其中$p_{ij}$表示第i个指标在第j个样本中的比例。
- 计算每个指标的权重,公式为:$w_i = \frac{1 - E_i}{\sum_{i=1}^{m}(1 - E_i)}$,其中$m$表示指标的个数。

2. 灰色关联分析法(Grey Relational Analysis):
灰色关联分析法是一种用于处理灰色系统的方法,它可以用于评估指标之间的关联程度。具体步骤如下:
- 将原始数据序列进行标准化处理,使得各指标处于相同的量纲范围内。
- 计算参考序列和各个比较序列之间的关联度,公式为:$r_i = \frac{\min_{j}(x_{0j}, x_{ij}) + \rho \max_{j}(x_{0j}, x_{ij})}{x_{0i} + \rho \sum_{j=1}^{n}x_{0j}}$,其中$x_{0j}$表示参考序列的第j个元素,$x_{ij}$表示比较序列的第i个元素,$\rho$为关联度衡量参数。
- 根据关联度的大小确定指标的权重。

3. TOPSIS法(Technique for Order of Preference by Similarity to Ideal Solution):
TOPSIS法是一种多属性决策方法,用于评估各个方案与理想解之间的接近程度。具体步骤如下:
- 将原始数据进行标准化处理,使得各指标处于相同的量纲范围内。
- 计算每个方案与理想解之间的距离,包括正理想解距离和负理想解距离。正理想解距离表示方案与理想解之间的最小距离,负理想解距离表示方案与理想解之间的最大距离。- 计算每个方案的综合评价指数,公式为:$C_i = \frac{负理想解距离}{负理想解距离 + 正理想解距离}$。
- 根据综合评价指数的大小确定方案的排序。

熵权-TOPSIS模型是一种常用的多准则决策方法,可以帮助决策者从多个候选方案中选择最佳方案。MATLAB是一种功能强大的数值计算软件,可以用于熵权-TOPSIS模型的实现。 在MATLAB中实现熵权-TOPSIS模型,首先需要计算各个指标的熵值。可以使用熵的计算公式相关函数在MATLAB中进行计算。接着,需要计算指标的权重,可以使用熵权法计算指标之间的权重。权重可以通过计算指标的熵信息熵的比值得到,表征指标的重要性。 然后,对原始数据进行归一化处理,可以使用线性归一化或者标准化方法将数据映射到相同的取值范围。归一化可以确保不同指标的数据单位一致,从而使得各个指标的权重可以进行合理的比较。 接下来,利用归一化后的数据计算各个候选方案的TOPSIS评价指标。TOPSIS方法通常使用距离度量来衡量候选方案与最优方案之间的距离。可以使用欧氏距离、曼哈顿距离或者其他距离度量方法来计算。 最后,在MATLAB中根据TOPSIS评价指标计算候选方案的最终得分,并根据得分进行排序选择最佳方案。可以使用MATLAB中的排序函数对候选方案进行排序,得到最终的结果。 总的来说,使用MATLAB实现熵权-TOPSIS模型可以通过计算指标的熵权重、数据归一化处理、计算TOPSIS评价指标排序等步骤实现。MATLAB提供了丰富的数值计算矩阵运算功能,可以方便地进行熵权-TOPSIS模型的实现分析。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值