13种改进粒子群优化算法

这些算法都是基于粒子群优化(PSO)算法的变体或改进,每个算法都通过特定的策略或机制来改进原始PSO的性能。以下是这些算法的简要介绍:

13种改进粒子群优化算法代码获取戳此处
  1. AsyLnCPSO(学习因子异步化的粒子群优化算法)
    • 该算法通过异步调整学习因子(即个体学习因子和社会学习因子)来平衡全局搜索和局部搜索能力,以改善算法的收敛速度和精度。

%------初始化种群的个体------------

for i=1:N

    for j=1:D

        x(i,j)=randn;  %随机初始化位置

        v(i,j)=randn;  %随机初始化速度

    end

end

%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------

for i=1:N

    p(i)=fitness(x(i,:));

    y(i,:)=x(i,:);

end

pg = x(N,:);             %Pg为全局最优

for i=1:(N-1)

    if fitness(x(i,:))<fitness(pg)

        pg=x(i,:);

    end

end

%------进入主要循环,按照公式依次迭代------------

for t=1:M

    c1 = c1max - (c1max - c1min)*t/M;
    
    c2 = c2max - (c2max - c2min)*t/M;
    
    for i=1:N

        v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));

        x(i,:)=x(i,:)+v(i,:);

        if fitness(x(i,:))<p(i)

            p(i)=fitness(x(i,:));

            y(i,:)=x(i,:);

        end

        if p(i)<fitness(pg)

            pg=y(i,:);

        end

    end

    Pbest(t)=fitness(pg);
  1. BreedPSO(基于杂交的粒子群优化算法)
    • 结合了粒子群优化算法和遗传算法的杂交机制,通过杂交操作引入新的解空间,以增强算法的全局搜索能力。
  2. CLSPSO(混沌粒子群优化算法)
    • 利用混沌理论来初始化粒子位置和速度,同时保持一定的混沌状态以增加解的多样性,提高算法的收敛速度。
  3. LinWPSO(线性递减权重粒子群优化)
    • 通过在迭代过程中线性递减惯性权重,平衡算法的探索和利用能力,使得算法在初期更注重全局搜索,而在后期更注重局部搜索。
  4. LnCPSO(学习因子同步变化的粒子群优化算法)
    • 在算法运行过程中同步调整学习因子,使个体学习因子和社会学习因子根据算法进度和性能自适应地变化。
  5. PSO(标准粒子群优化算法)
    • 最基本的粒子群优化算法,通过模拟鸟群的社会行为,通过个体和群体的协作来寻找最优解。
  6. RandWPSO(随机权重粒子群优化算法)
    • 在每次迭代中随机选择惯性权重,以应对不同优化问题的复杂性,提高算法的鲁棒性。
  7. SAPSO(自适应权重粒子群优化算法)
    • 根据粒子的适应度值和迭代次数自适应地调整惯性权重,以平衡算法的全局搜索和局部搜索能力。
  8. SecPSO(二阶粒子群优化算法)
    • 引入二阶导数信息来加速算法的收敛速度,特别是在处理复杂优化问题时,二阶信息可以提供更多的搜索方向。
  9. SecVibratPSO(二阶震荡粒子群优化算法)
    • 在二阶粒子群优化的基础上引入震荡机制,通过震荡操作来避免算法陷入局部最优,提高全局搜索能力。
  10. SelPSO(基于自然选择的粒子群优化算法)
    • 借鉴自然选择的思想,通过选择机制来保留优秀粒子,淘汰较差粒子,以提高算法的收敛速度和精度。
  11. SimuAPSO(基于模拟退火的粒子群优化算法)
    • 结合模拟退火算法和粒子群优化算法,利用模拟退火算法的概率接受机制来避免算法过早收敛,提高全局搜索能力。
  12. YSPSO(带压缩因子的粒子群优化算法)
    • 通过引入压缩因子来调整粒子的速度和位置更新公式,简化算法参数设置,同时保持算法的收敛速度和精度。

这些算法都是针对特定问题或优化需求对PSO算法进行的不同改进和拓展,选择适合的算法可以大大提高优化问题的求解效率和效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值