零基础入门PyTorch手写数字识别实战教程(含PyTorch环境搭建)——CNN篇

目录

引言

一、环境准备

(一)导入必要库

(二)环境搭建——已搭建可直接跳过

1,Anaconda下载

(1)官网下载(Download Anaconda Distribution | Anaconda)

(2)清华镜像网下载(推荐使用)

Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

2,Pytorch安装前检查

(1)电脑未安装N卡

(2)电脑安装N卡

3,PyTorch-CPU版本安装

4,PyTorch-GPU版本安装

(1)查看 CUDA 显卡驱动版本

(2)安装 CUDA

(3)安装 CuDNN(cuda加速器)

(4)安装PyTorch-GPU

(5)检查是否安装成功

(三)定义超参数

二、数据集下载与导入

(一)MNIST 数据集基本介绍

(二)读取 MNIST 数据集

三、MNIST 识别流程及专业名词解释

(一)手写体识别流程

(二)专业名词解释

(1)参数与超参数

(2)batch_size 批处理

(3)epoch 轮次

(4)transforms 变换

(5)nomalize 正则化

(6)卷积层:

(7)池化层:

(8)激活层:

(9)损失函数:

(10)前向传播:

(11)反向传播

(12)梯度下降

四、构建网络模型(CNN)

五、定义损失函数和优化器

六、定义训练方法

(一)关键流程说明

1、设备部署

2、梯度管理

3、优化机制

4、训练监控

(二)功能特性

七、定义测试方法

(一)核心机制说明

1、验证模式设置

2、预测结果解析

3、精度计算流程

4、关键数学计算

(二)差异化特性

1、与训练模式的三大差异

2、工程优化特点

(三)附加说明

1、可扩展性:

八、调用六七步定义的函数进行训练

九、结果与分析

十、完整代码


引言

本文档详细介绍了使用 PyTorch 框架搭建一个简单的手写数字识别系统的全过程。从环境准备到模型训练与测试,每一步都包含详细的代码示例和操作指南。该系统利用卷积神经网络(CNN)处理 MNIST 数据集,旨在为初学者提供一个易于理解且可操作的项目案例。通过本教程,你将学会如何:

  • 准备必要的开发环境,包括安装 Anaconda、PyTorch(CPU/GPU 版本)和 OpenCV。
  • 下载并加载 MNIST 数据集。
  • 定义超参数及数据预处理步骤。
  • 构建并训练一个基本的卷积神经网络模型。
  • 定义损失函数和优化器,实现模型的前向与反向传播。
  • 设计并实现模型的训练与测试方法。
  • 分析模型在训练集与测试集上的表现,评估模型的准确性和稳定性。

无论你是刚刚接触深度学习的新手,还是希望复习相关知识的老手,希望本文都能提供宝贵的学习资源,最后欢迎各位大佬提出意见,谢谢大家~

一、环境准备

(一)导入必要库

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import cv2
import numpy as np
from torch.utils.data import DataLoader

(二)环境搭建——已搭建可直接跳过

1,Anaconda下载

(1)官网下载(Download Anaconda Distribution | Anaconda

选择需要的安装包,按提示下载即可。

(2)清华镜像网下载(推荐使用)
Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

选择最新版本的安装包下载即可

在开始界面搜索 Prompt ,如果出现下方界面代表安装成功,完成后留以备用。如安装遇到问题,可参考北观止大佬的配置教程

Anaconda基本安装与配置:安装、排错、配置清华源_清华源按照anaconda-CSDN博客

2,Pytorch安装前检查

安装PyTorch前,需要确定使用的电脑是否安装了N卡(NVIDIA显卡),因为 PyTorch 的GPU版本需要使用N卡来加速计算,判断步骤如下:

  1. 打开设备管理器:在Windows上,按下Win键和X键,然后选择“设备管理器”。
  2. 查看显示适配器:在设备管理器中,展开“显示适配器”或“图形处理器”部分,查看是否有NVIDIA显卡的列表。如果有NVIDIA显卡,那么您的计算机适合安装PyTorch的GPU版本。
(1)电脑未安装N卡

(2)电脑安装N卡

3,PyTorch-CPU版本安装

为了更好地管理不同项目的 Python 环境。通常需要创建一个虚拟环境,用于隔开不同项目之间的依赖项,避免不同项目之间可能发生的冲突问题。以下附虚拟环境创建步骤。

(1)打开命令提示符或PowerShell:开始界面搜索Prompt,打开Anaconda Prompt

(2)创建虚拟环境:运行以下命令创建一个新的虚拟环境。可以将 <env_name> 替换成随意的环境名称(注意:只能是小写字母,出现其他符号会报错)

conda create -n <env_name> python=<version>

例如,我要创建一个名为 cvtest 的虚拟环境,其中 python 版本为3.8。

conda create -n cvtest python=3.8

(3)激活虚拟环境:运行以下指令来激活刚刚创建的虚拟环境。在 Windows 上,使用 activate 命令。

conda activate cvtest

激活虚拟环境后,可以看到命令提示符前缀显示为cvtest。这样我们就可以使用该虚拟环境下的 Python 解释器了。

(4)安装 PyTorch(CPU):在激活的虚拟环境中,使用 pip 安装 PyTorch 。根据需求,选择安装的版本。

pip install torch torchvision torchaudio

当然可以使用清华镜像源下载。

pip install torch torchvision torchaudio --index-url https://pypi.tuna.tsinghua.edu.cn/simple

(5)检验是否安装成功:安装完后,输入下方指令查看 PyTorch——CPU 版本是否安装成功

pip list

出现以上三行就代表安装成功了(CPU版本)

4,PyTorch-GPU版本安装

(1)查看 CUDA 显卡驱动版本

同时按下 WIN + R 键,输入 cmd 打开命令行终端,输入以下指令

nvidia-smi

我们可以看到当前版本为12.8

(2)安装 CUDA

从官网下载对应的 CUDA 版本,由于我的显卡版本为12.8,我只需要安装小于或者等于12.8都是可以的,我这里选择12.6.3。

官网(CUDA工具包存档|NVIDIA开发者 --- CUDA Toolkit Archive | NVIDIA Developer

选择对应的操作系统版本选择安装包即可。

双击安装包,安装在自定义的目录文件夹下(我的C盘比较大,就直接装C盘上了)

注意,此处的 CUDA 安装地址需要提前拷贝,后面安装 cudnn 时需要用到。

选择“精简”模式,接下来一直点“下一步”即可。

查看是否安装成功,在命令行输入指令。

nvcc  -V

出现如下的输出证明安装成功。

(3)安装 CuDNN(cuda加速器)

官网(CUDA深度神经网络(cuDNN)|NVIDIA开发者 --- CUDA Deep Neural Network (cuDNN) | NVIDIA Developer

按照上方流程下载压缩包或安装包都可以,解压后将文件移动到 CUDA 安装路径下,就安装完成啦~

(4)安装PyTorch-GPU

(1)激活虚拟环境:打开先前安装 PyTorch-CPU 时创建的虚拟环境

conda activate cvtest

(2)安装PyTorch(GPU):使用pip安装 PyTorch 。注意请根据需求&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值