我用Python抓取了【S11全球总决赛】直播评论,EDG nb

  • 常见请求头的反爬

  • json数据的处理

  • csv文件处理

项目思路解析


找到你需要采集的视频地址(EDG牛逼!!!!)

image.png

网址:【S11全球总决赛】决赛 11月6日 EDG vs DK_哔哩哔哩bilibili_英雄联盟

爬虫采集数据首先要找到对应的数据目标地址,可以明显看出当前的网页的评论数据是在不断变化的,需要找到对应的评论接口,习惯性的去找动态数据。

image.png

数据并没有在动态数据里,清空数据加载新的评论数据,触发加载条件。

image.png

加载的数据在all里,明确数据之后就好处理了,获取到对应的网页接口,通过requests发送网络请求。

url = ‘https://api.bilibili.com/x/v2/reply/main?jsonp=jsonp&next={}&type=1&oid=891511588&mode=3&

A: 由于预测S11曲线需要一定的数据处理和模型训练,这里提供一些基础的代码框架供参考。 首先需要导入需要用到的库: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression ``` 然后我们需要读取和处理数据。一种常见的格式为Touchstone文件,可以使用pandas库的read_table函数读取: ```python data = pd.read_table('path/to/data.s2p', skiprows=5, delim_whitespace=True, header=None) ``` 读取后的数据中每一列表示一条参数曲线,例如S11参数在第二列。我们需要将该列与对应的频率列提取出来: ```python freq = data.iloc[:, 0] s11 = data.iloc[:, 1] ``` 接下来将数据分为训练集和测试集,用来训练模型和验证模型的准确性: ```python X_train , X_test , y_train , y_test = train_test_split(freq ,s11, test_size=0.2, random_state=0) ``` 然后构建线性回归模型: ```python model = LinearRegression() model.fit(X_train.values.reshape(-1,1), y_train.values.reshape(-1,1)) ``` 训练完后我们可以用测试集数据来评估该模型的准确性: ```python from sklearn.metrics import mean_absolute_error, mean_squared_error y_pred = model.predict(X_test.values.reshape(-1,1)) print('MAE:', mean_absolute_error(y_test, y_pred)) print('RMSE:', np.sqrt(mean_squared_error(y_test, y_pred))) ``` 最后我们可以用模型预测S11曲线: ```python s11_pred = model.predict(freq.values.reshape(-1,1)) plt.plot(freq, s11, label='Measured') plt.plot(freq, s11_pred, label='Predicted') plt.legend() plt.show() ``` 这里仅提供了一个基础的框架,具体还需要根据实际情况对代码进行修改和完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值