卷积神将网络的计算公式为:
N=(W-F+2P)/S+1
其中N:输出大小
W:输入大小
F:卷积核大小
P:填充值的大小
S:步长大小
举例:
nn.Conv2d(in_channels=3,out_channels=96,kernel_size=12,stride=4,padding=2)
in_channels=3:表示的是输入的通道数,由于是RGB型的,所以通道数是3.
out_channels=96:表示的是输出的通道数,设定输出通道数的96(这个是可以根据自己的需要来设置的)
kernel_size=12:表示卷积核的大小是12x12的,也就是上面的 “F”, F=12
stride=4:表示的是步长为4,也就是上面的S, S=4
padding=2:表示的是填充值的大小为2,也就是上面的P, P=2
假如你的图像的输入size是256x256的,由计算公式知N=(256-12+2x2)/4+1=63,也就是输出size为63x63x96
卷积层的参数计算:
卷积后feature map边长: outputSize =(originalSize +