CNN基础——卷积神经网络的组成

本文详细解释了卷积神经网络中关键组件的计算公式,包括卷积层的输出大小、参数数量和连接数,以及激活层(如ReLU)的作用。同时介绍了池化层的功能及其参数计算。最后提及了如何通过《2024年Python开发全套学习资料》系统学习深度学习技术。
摘要由CSDN通过智能技术生成

卷积神将网络的计算公式为:

N=(W-F+2P)/S+1

其中N:输出大小

W:输入大小

F:卷积核大小

P:填充值的大小

S:步长大小

举例:

nn.Conv2d(in_channels=3,out_channels=96,kernel_size=12,stride=4,padding=2)

in_channels=3:表示的是输入的通道数,由于是RGB型的,所以通道数是3.

out_channels=96:表示的是输出的通道数,设定输出通道数的96(这个是可以根据自己的需要来设置的)

kernel_size=12:表示卷积核的大小是12x12的,也就是上面的 “F”, F=12

stride=4:表示的是步长为4,也就是上面的S, S=4

padding=2:表示的是填充值的大小为2,也就是上面的P, P=2

假如你的图像的输入size是256x256的,由计算公式知N=(256-12+2x2)/4+1=63,也就是输出size为63x63x96

卷积层的参数计算:

卷积后feature map边长: outputSize =(originalSize +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>