第二期书生浦语大模型实战营第二次课程笔记--轻松玩转书生·浦语大模型趣味 Demo

mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo

其中,文件/root/demo/download_mini.py(vscode)

import os
from modelscope.hub.snapshot_download import snapshot_download
# 创建保存模型目录
os.system("mkdir /root/models")
# save\_dir是模型保存到本地的目录
save_dir="/root/models"
snapshot_download("Shanghai\_AI\_Laboratory/internlm2-chat-1\_8b", 
                  cache_dir=save_dir, 
                  revision='v1.1.0')

(terminal)

python /root/demo/download_mini.py

其中,文件/root/demo/cli_demo.py(vscode)

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/models/Shanghai\_AI\_Laboratory/internlm2-chat-1\_8b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break

    length = 0
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)

(terminal)

conda activate demo
python /root/demo/cli_demo.py

就可以直接对话了

实战部署优秀作品 八戒-Chat-1.8B 模型

八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳 均是在第一期实战营中运用 InternLM2-Chat-1.8B 模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B 是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou 子项目之一,八戒-Chat-1.8B 能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。
八戒-Chat-1.8B:https://www.modelscope.cn/models/JimmyMa99/BaJie-Chat-mini/summary
Chat-嬛嬛-1.8B:https://openxlab.org.cn/models/detail/BYCJS/huanhuan-chat-internlm2-1_8b
Mini-Horo-巧耳:https://openxlab.org.cn/models/detail/SaaRaaS/Horowag_Mini
配置环境+拉取代码(terminal)

conda activate demo
cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial

运行demo(terminal)

python /root/Tutorial/helloworld/bajie_download.py
streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006

并且将服务器端口映射本地,即可打开聊天网页demo

实战部署Lagent 智能体 Demo

拉取代码(terminal)

conda activate demo
cd /root/demo
git clone https://gitee.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装
cd /root/demo/lagent
#构造软链接快捷访问方式,并把/root/demo/lagent/examples/internlm2_agent_web_demo_hf.py的约71行文件路径改为本地
#value='/root/models/internlm2-chat-7b'
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b
streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006
#映射服务器端口到本地打开 http://127.0.0.1:6006,勾选数据分析,即可进行智能体方面的互动,比如数据分析,计算器

实战部署浦语·灵笔2 模型

浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,
配置环境(terminal)

conda activate demo
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5
cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626
#构造软链接快捷访问方式:
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
 **自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**

![img](https://img-blog.csdnimg.cn/img_convert/a6dfadf0c835225ab78d897e9f0f4373.png)

![img](https://img-blog.csdnimg.cn/img_convert/8b708dc7519b4f9f2f38602c28d5025e.png)

![img](https://img-blog.csdnimg.cn/img_convert/d3787a06efb3e0a1b257d6337ccf818e.png)

![img](https://img-blog.csdnimg.cn/img_convert/9288dd554761cee7bd439c5cc2aae037.png)

![img](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)

![img](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)**

适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)**

![](https://img-blog.csdnimg.cn/img_convert/14547f50a7795ae69e770bb1eb22d1f4.jpeg)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值