推荐系统粗排&召回相关性优化的最新进展

本文探讨了如何优化推荐系统的召回与粗排阶段,重点介绍了Stanford和Facebook关于late fusion的论文,以及Google的预训练模型设计。双塔DSSM和交互式DSSM模型被比较,提出新的预训练策略如ICT、BFS和WLP,以提升模型性能。ColBERT模型通过query和doc的embedding late fusion提高召回率,适用于大规模检索。文中还分享了相关资源和Java开发者的学习资料。
摘要由CSDN通过智能技术生成

推荐系统粗排&召回相关性优化的最新进展

https://arxiv.org/pdf/2002.03932.pdf

Google的paper(How to pretrain?),主要是讲怎么样更好的设计pretrain任务,用于问答任务。

推荐系统粗排&召回相关性优化的最新进展

https://arxiv.org/pdf/2004.12832.pdf

Stanford的paper(How to late fusion?),主要是讲怎么样更好的让query和doc进行late fusion,用于召回侧&&粗排?相比双塔dssm模型,recall更优;相比交互式dssm模型,效率上更优。此外,召回侧可以使用faiss超大规模检索,用于工业界的搜索/推荐等系统。

推荐系统粗排&召回相关性优化的最新进展

https://arxiv.org/pdf/1905.01969.pdf

Facebook的paper(How to late fusion?),和上个paper的目的一致,怎么样进行late fusion,提高检索的效率,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值