- 举例说明(如图:)
- 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法
==================================================================
-
普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
-
普利姆的算法如下:
-
设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
-
若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
-
若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合
-
中,将边(ui,vj)加入集合D中,标记visited[vj]=1
-
重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
-
提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解.
=============================================================
=============================================================
package prim;
import java.util.Arrays;
public class PrimAlgorithm {
public static void main(String[] args) {
// 测试图是否创建成功
char[] data = new char[]{‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’};
int verxs = data.length;
// 邻接矩阵关系使用二维数组描述
int[][] weight = new int[][]{
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 3},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000}};
// 创建一个MGraph对象
MGraph mGraph = new MGraph(verxs);
// 创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(mGraph, verxs, data, weight);
// 输出
minTree.showGraph(mGraph);
// 测试普里姆算法
minTree.prim(mGraph,0);
}
}
// 创建最小生成树 ———> 村庄的图
class MinTree {
/**
-
创建邻接矩阵
-
@param graph 图对象
-
@param verxs 图对应顶点个数
-
@param data 图的各个顶点的值
-
@param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char[] data, int[][] weight) {
int i, j;
for (i = 0; i < verxs; i++) { // 顶点
graph.data[i] = data[i];
for (j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
/**
-
显示图的邻接矩阵
-
@param graph 图对象
*/
public void showGraph(MGraph graph) {
for (int[] link : graph.weight) {
System.out.println(Arrays.toString(link));
}
}
/**
-
编写prim算法,的到最小生成树
-
@param graph 图
-
@param v 起始点,表示从图的第几个结点开始生成 ‘A’->0 ‘B’->1
*/
public void prim(MGraph graph, int v) {
// visited[] 标记结点(顶点)是否被访问过,默认元素的值都是0,表示没有访问过
int visited[] = new int[graph.verxs];
// for (int i = 0; i < graph.verxs; i++) {
// visited[i] = 0;
// }
// 把当前结点标记为已访问
visited[v] = 1;
// 用h1和h2记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; // 将miniWeight初始化成一个大数,后面的遍历过程中,会被替换
for (int k = 1; k < graph.verxs; k++) { // 因为有graph.verxs个顶点,所以普里姆算法结束后,会有graph.verxs-1条边
// 确定每一次生成的子图,和哪个结点的距离最近
for (int i = 0; i < graph.verxs; i++) { // i结点表示被访问过的结点
for (int j = 0; j < graph.verxs; j++) { // j结点表示还未访问过的结点
if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
// 替换minWeight,寻找已访问过的结点和未访问过的结点间的权值最小的边
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!**
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!