-
账户风险:包括账户被黑客盗用,恶意注册账号等几种情形。
-
买家风险:买家恶意下单占用库存进行不正当竞争;黄牛利用促销抢购低价商品; 此外还有良品拒收,欺诈退款及常见于B2B交易的虚假询盘等。
-
卖家风险:不良卖家进行恶意欺诈的行为,例如货不对板,虚假发货,炒作信用等, 此外还有出售违禁商品、侵权产品等。
-
交易风险:信用卡盗刷,支付欺诈,洗钱套现等。
2 风控
大型电商网站都配备有专门的风控团队进行风险控制,风控的手段也包括自动和人 工两种。机器自动识别为高风险的交易和信息会发送给风控审核人员进行人工审核,机 器自动风控的技术和方法也不断通过人工发现的新风险类型进行逐步完善。
机器自动风控的技术手段主要有规则引擎和统计模型。
- 规则引擎
当交易的某些指标满足一定条件时,就会被认为具有高风险的欺诈可能性。比如用 户来自欺诈高发地区;交易金额超过某个数值;和上次登录的地址距离差距很大;用户 登录地与收货地不符;用户第一次交易等等。
大型网站在运营过程中,结合业界的最新发现,会总结出数以千计的此类高风险交 易规则。一种方案是在业务逻辑中通过编程方式使用if…else…代码实现这些规则,可想 而知,这些代码会非常庞大,而且由于运营过程中不断发现新的交易风险类型,需要不 断调整规则,代码也需要不断修改……
网站一般使用规则引擎技术处理此类问题。规则引擎是一种将业务规则和规则处理逻辑相分离的技术,业务规则文件由运营人员通过管理界面编辑,当需要修改规则时, 无需更改代码发布程序,即可实时使用新规则。而规则处理逻辑则调用规则处理输入的 数据,如图8.14所示。
- 统计模型
规则引擎虽然技术简单,但是随着规则的逐渐增加,会出现规则冲突,难以维护等 情况,而且规则越多,性能也越差。目前大型网站更倾向于使用统计模型进行风控。风 控领域使用的统计模型使用前面提到的分类算法或者更复杂的机器学习算法进行智能统 计。如图8.15所示,根据历史交易中的欺诈交易信息训练分类算法,然后将经过采集加 工后的交易信息输入分类算法,即可得到交易风险分值。
经过充分训练后的统计模型,准确率不低于规则引擎。分类算法的实时计算性能更好一些,由于统计模型使用模糊识别,并不精确匹配欺诈类型规则,因此对新出现的交 易欺诈还具有一定预测性。
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Java开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
18164986)
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!