Fate实战——实现集群横向逻辑回归(1)

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

在集群的fate01上的/data/projects/fate目录下新建chapter05文件夹(单机版叫这个名字,我也懒得换了),进入chapter05文件夹然后新建data文件夹,然后将数据集放到该目录下的data目录中。

参与的节点重复上面的操作,每个节点放置一份数据。

完成数据转换,需要一个配置文件和一个启动程序,我演示第一个节点的操作。

编写训练集的配置文件

upload_train.json

{

“file”: “chapter05/data/breast_1_train.csv”, //训练集的路径,我们这次试用fate_flow_client.py上传数据,默认的home路径是/data/projects/fate,所以我们需要把剩下的路径补充完整

“head”: 1,

“partition”: 1,//是否要分区,小数据不用分区

“work_mode”: 1,//0是单机,1是集群,我们要注意

“table_name”: “homo_breast_1_train”,

“namespace”: “homo_host_breast_train”//后面这两个字段一个是数据集的名字和命名空间,这个在后面的配置中要用到。

}

编写验证集的配置文件

upload_eval.json

{

“file”: “chapter05/data/breast_eval.csv”, //训练集的路径,我们这次试用fate_flow_client.py上传数据,默认的home路径是/data/projects/fate,所以我们需要把剩下的路径补充完整

“head”: 1,

“partition”: 1,//是否要分区,小数据不用分区

“work_mode”: 1,//0是单机,1是集群,我们要注意

“table_name”: “homo_breast_eval”,

“namespace”: “homo_host_breast_eval”//后面这两个字段一个是数据集的名字和命名空间,这个在后面的配置中要用到。

}

上面的配置每个节点都配置一份,切分数据集时,训练集切了两份,验证集只有一份,所以验证集配置成一样的,训练我在fate01和fate03上使用的breast_1_train.csv,在fate02上用breast_2_train.csv,大家根据自己的情况修改配置文件即可。

下面执行上传数据的操作,有两种方式上传数据,一种是用fate_flow_client.py上传数据,一种使用flow命令上传数据,我在使用flow上传数据时遇到一些问题,所以先演示如何使用fate_flow_client.py上传数据。具体的详细使用可以查阅官方的文档。

官方文档:上传数据指南 — FATE documentation

启动虚拟环境,并进入chapter05下面,如图:

image-20210820034106809

然后执行:

python …/fate_flow/python/fate_flow_client.py -f upload -c upload_train.json

-f :函数名称

-c :配置文件

将验证集也上传上去:

fate02和fate03重复上面的步骤,把训练集和测试传上去。

到这里数据集已经上传,接着就可以开始做训练了。

3 模型训练

=================================================================

为了让任务模型的构建更加灵活,目前 FATE 使用了一套自定的领域特定语言 (DSL) 来描述任务。在 DSL 中,各种模块(例如数据读写 data_io,特征工程 feature-engineering, 回归 regression,分类 classification)可以通向一个有向无环图 (DAG) 组织起来。通过各种方式,用户可以根据自身的需要,灵活地组合各种算法模块。

除此之外,每个模块都有不同的参数需要配置,不同的 party 对于同一个模块的参数也可能有所区别。为了简化这种情况,对于每一个模块,FATE 会将所有 party 的不同参数保存到同一个运行配置文件(Submit Runtime Conf)中,并且所有的 party 都将共用这个配置文件。这个指南将会告诉你如何创建一个 DSL 配置文件。

官方的文档:DSL 配置和运行配置 V1 — FATE documentation

所以我们需要写一个DSL配置文件和Config文件。

1)DSL文件配置

文件名字:test_homolr_train_job_dsl.json

{

“components” : {

“dataio_0”: {

“module”: “DataIO”,

“input”: {

“data”: {

“data”: [

“args.train_data”

]

}

},

“output”: {

“data”: [“train”],

“model”: [“dataio”]

}

},

“dataio_1”: {

“module”: “DataIO”,

“input”: {

“data”: {

“data”: [

“args.eval_data”

]

},

“model”: [“dataio_0.dataio”]

},

“output”: {

“data”: [“eval_data”]

}

},

“feature_scale_0”: {

“module”: “FeatureScale”,

“input”: {

“data”: {

“data”: [

“dataio_0.train”

]

}

},

“output”: {

“data”: [“train”],

“model”: [“feature_scale”]

}

},

“feature_scale_1”: {

“module”: “FeatureScale”,

“input”: {

“data”: {

“data”: [

“dataio_1.eval_data”

]

}

},

“output”: {

“data”: [“eval_data”],

“model”: [“feature_scale”]

}

},

“homo_lr_0”: {

“module”: “HomoLR”,

“input”: {

“data”: {

“train_data”: [

“feature_scale_0.train”

]

}

},

“output”: {

“data”: [

“train”

],

“model”: [“homolr”]

}

},

“homo_lr_1”: {

“module”: “HomoLR”,

“input”: {

“data”: {

“eval_data”: [

“feature_scale_1.eval_data”

]

},

“model”: [

“homo_lr_0.homolr”

]

},

“output”: {

“data”: [

“eval_data”

],

“model”: [“homolr”]

}

},

“evaluation_0”: {

“module”: “Evaluation”,

“input”: {

“data”: {

“data”: [

“homo_lr_0.train”

]

}

}

},

“evaluation_1”: {

“module”: “Evaluation”,

“input”: {

“data”: {

“data”: [

“homo_lr_1.eval_data”

]

}

}

}

}

}

我在DSL里面配置了训练集组件和验证集组件,这个组件的配置在单机版的横向联邦中提到过。

2)Config配置文件

文件名字:test_homolr_train_job_conf.json

{

“initiator”: {

“role”: “guest”,

“party_id”: 9999

},

“job_parameters”: {

“work_mode”: 1

},

“role”: {

“guest”: [

9999

],

“host”: [

10000,8888

],

“arbiter”: [

9999

]

},

“role_parameters”: {

“guest”: {

“args”: {

“data”: {

“train_data”: [

{

“name”: “homo_breast_2_train”,

“namespace”: “homo_host_breast_train”

}

],

“eval_data”: [

{

“name”: “homo_breast_eval”,

“namespace”: “homo_host_breast_eval”

}

]

}

},

“dataio_0”: {

“label_name”: [“y”]

}

},

“host”: {

“args”: {

“data”: {

“train_data”: [

{

“name”: “homo_breast_1_train”,

“namespace”: “homo_host_breast_train”

},

{

“name”: “homo_breast_2_train”,

“namespace”: “homo_host_breast_train”

}

],

“eval_data”: [

{

“name”: “homo_breast_eval”,

“namespace”: “homo_host_breast_eval”

},

{

“name”: “homo_breast_eval”,

“namespace”: “homo_host_breast_eval”

}

]

}

},

“dataio_0”: {

“label_name”: [“y”,“y”]

},

“evaluation_0”: {

“need_run”: [

false,false

]

}

}

},

“algorithm_parameters”: {

“dataio_0”: {

“with_label”: true,

“label_name”: “y”,

“label_type”: “int”,

“output_format”: “dense”

},

“homo_lr_0”: {

“penalty”: “L2”,

“optimizer”: “sgd”,

“tol”: 1e-05,

“alpha”: 0.01,

“max_iter”: 10,

“early_stop”: “diff”,

“batch_size”: 500,

“learning_rate”: 0.15,

“decay”: 1,

“decay_sqrt”: true,

“init_param”: {

“init_method”: “zeros”

},

“encrypt_param”: {

“method”: null

},

“cv_param”: {

“n_splits”: 4,

“shuffle”: true,

“random_seed”: 33,

“need_cv”: false

}

}

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

小型横向逻辑回归示意图如下所示: 中介绍了使用FATE从零开始构建一个简单的横向逻辑回归模型的基本流程。在示意图中,通过使用威斯康星州临床科学中心开源的乳腺癌肿瘤数据集进行测试,将数据集切分成本地和远程两个部分。本地部分用于训练本地模型,远程部分用于训练远程模型。然后,通过模型交互和参数传递的方式实现横向联邦学习。最后,合并本地模型和远程模型,得到最终的横向逻辑回归模型。 中提到了一个示意图,图中展示了坐标框回归路径的不同方式。蓝色的框表示初始锚框,绿色的框表示真实标记框,红色的框表示最优的坐标框。示意图中展示了两种不同的回归路径:逆时针旋转和顺时针旋转。根据最长边表示法,实际回归路径可能会受到一定影响,需要进行合适的角度回归方法。 综上所述,小型横向逻辑回归示意图主要展示了横向联邦学习的基本流程和坐标框的回归路径示例。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [用FATE从零实现横向逻辑回归](https://download.csdn.net/download/unseven/88214310)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [关于前端架构的过去、现在与未来](https://blog.csdn.net/Ture010Love/article/details/104291621)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [目标检测YOLO实战应用案例100讲-基于深度学习的光学遥感图像目标检测及价值评估](https://blog.csdn.net/qq_36130719/article/details/131108514)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值