现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
在集群的fate01上的/data/projects/fate目录下新建chapter05文件夹(单机版叫这个名字,我也懒得换了),进入chapter05文件夹然后新建data文件夹,然后将数据集放到该目录下的data目录中。
参与的节点重复上面的操作,每个节点放置一份数据。
完成数据转换,需要一个配置文件和一个启动程序,我演示第一个节点的操作。
编写训练集的配置文件
upload_train.json
{
“file”: “chapter05/data/breast_1_train.csv”, //训练集的路径,我们这次试用fate_flow_client.py上传数据,默认的home路径是/data/projects/fate,所以我们需要把剩下的路径补充完整
“head”: 1,
“partition”: 1,//是否要分区,小数据不用分区
“work_mode”: 1,//0是单机,1是集群,我们要注意
“table_name”: “homo_breast_1_train”,
“namespace”: “homo_host_breast_train”//后面这两个字段一个是数据集的名字和命名空间,这个在后面的配置中要用到。
}
编写验证集的配置文件
upload_eval.json
{
“file”: “chapter05/data/breast_eval.csv”, //训练集的路径,我们这次试用fate_flow_client.py上传数据,默认的home路径是/data/projects/fate,所以我们需要把剩下的路径补充完整
“head”: 1,
“partition”: 1,//是否要分区,小数据不用分区
“work_mode”: 1,//0是单机,1是集群,我们要注意
“table_name”: “homo_breast_eval”,
“namespace”: “homo_host_breast_eval”//后面这两个字段一个是数据集的名字和命名空间,这个在后面的配置中要用到。
}
上面的配置每个节点都配置一份,切分数据集时,训练集切了两份,验证集只有一份,所以验证集配置成一样的,训练我在fate01和fate03上使用的breast_1_train.csv,在fate02上用breast_2_train.csv,大家根据自己的情况修改配置文件即可。
下面执行上传数据的操作,有两种方式上传数据,一种是用fate_flow_client.py上传数据,一种使用flow命令上传数据,我在使用flow上传数据时遇到一些问题,所以先演示如何使用fate_flow_client.py上传数据。具体的详细使用可以查阅官方的文档。
官方文档:上传数据指南 — FATE documentation
启动虚拟环境,并进入chapter05下面,如图:
然后执行:
python …/fate_flow/python/fate_flow_client.py -f upload -c upload_train.json
-f :函数名称
-c :配置文件
将验证集也上传上去:
fate02和fate03重复上面的步骤,把训练集和测试传上去。
到这里数据集已经上传,接着就可以开始做训练了。
=================================================================
为了让任务模型的构建更加灵活,目前 FATE 使用了一套自定的领域特定语言 (DSL) 来描述任务。在 DSL 中,各种模块(例如数据读写 data_io,特征工程 feature-engineering, 回归 regression,分类 classification)可以通向一个有向无环图 (DAG) 组织起来。通过各种方式,用户可以根据自身的需要,灵活地组合各种算法模块。
除此之外,每个模块都有不同的参数需要配置,不同的 party 对于同一个模块的参数也可能有所区别。为了简化这种情况,对于每一个模块,FATE 会将所有 party 的不同参数保存到同一个运行配置文件(Submit Runtime Conf)中,并且所有的 party 都将共用这个配置文件。这个指南将会告诉你如何创建一个 DSL 配置文件。
官方的文档:DSL 配置和运行配置 V1 — FATE documentation
所以我们需要写一个DSL配置文件和Config文件。
1)DSL文件配置
文件名字:test_homolr_train_job_dsl.json
{
“components” : {
“dataio_0”: {
“module”: “DataIO”,
“input”: {
“data”: {
“data”: [
“args.train_data”
]
}
},
“output”: {
“data”: [“train”],
“model”: [“dataio”]
}
},
“dataio_1”: {
“module”: “DataIO”,
“input”: {
“data”: {
“data”: [
“args.eval_data”
]
},
“model”: [“dataio_0.dataio”]
},
“output”: {
“data”: [“eval_data”]
}
},
“feature_scale_0”: {
“module”: “FeatureScale”,
“input”: {
“data”: {
“data”: [
“dataio_0.train”
]
}
},
“output”: {
“data”: [“train”],
“model”: [“feature_scale”]
}
},
“feature_scale_1”: {
“module”: “FeatureScale”,
“input”: {
“data”: {
“data”: [
“dataio_1.eval_data”
]
}
},
“output”: {
“data”: [“eval_data”],
“model”: [“feature_scale”]
}
},
“homo_lr_0”: {
“module”: “HomoLR”,
“input”: {
“data”: {
“train_data”: [
“feature_scale_0.train”
]
}
},
“output”: {
“data”: [
“train”
],
“model”: [“homolr”]
}
},
“homo_lr_1”: {
“module”: “HomoLR”,
“input”: {
“data”: {
“eval_data”: [
“feature_scale_1.eval_data”
]
},
“model”: [
“homo_lr_0.homolr”
]
},
“output”: {
“data”: [
“eval_data”
],
“model”: [“homolr”]
}
},
“evaluation_0”: {
“module”: “Evaluation”,
“input”: {
“data”: {
“data”: [
“homo_lr_0.train”
]
}
}
},
“evaluation_1”: {
“module”: “Evaluation”,
“input”: {
“data”: {
“data”: [
“homo_lr_1.eval_data”
]
}
}
}
}
}
我在DSL里面配置了训练集组件和验证集组件,这个组件的配置在单机版的横向联邦中提到过。
2)Config配置文件
文件名字:test_homolr_train_job_conf.json
{
“initiator”: {
“role”: “guest”,
“party_id”: 9999
},
“job_parameters”: {
“work_mode”: 1
},
“role”: {
“guest”: [
9999
],
“host”: [
10000,8888
],
“arbiter”: [
9999
]
},
“role_parameters”: {
“guest”: {
“args”: {
“data”: {
“train_data”: [
{
“name”: “homo_breast_2_train”,
“namespace”: “homo_host_breast_train”
}
],
“eval_data”: [
{
“name”: “homo_breast_eval”,
“namespace”: “homo_host_breast_eval”
}
]
}
},
“dataio_0”: {
“label_name”: [“y”]
}
},
“host”: {
“args”: {
“data”: {
“train_data”: [
{
“name”: “homo_breast_1_train”,
“namespace”: “homo_host_breast_train”
},
{
“name”: “homo_breast_2_train”,
“namespace”: “homo_host_breast_train”
}
],
“eval_data”: [
{
“name”: “homo_breast_eval”,
“namespace”: “homo_host_breast_eval”
},
{
“name”: “homo_breast_eval”,
“namespace”: “homo_host_breast_eval”
}
]
}
},
“dataio_0”: {
“label_name”: [“y”,“y”]
},
“evaluation_0”: {
“need_run”: [
false,false
]
}
}
},
“algorithm_parameters”: {
“dataio_0”: {
“with_label”: true,
“label_name”: “y”,
“label_type”: “int”,
“output_format”: “dense”
},
“homo_lr_0”: {
“penalty”: “L2”,
“optimizer”: “sgd”,
“tol”: 1e-05,
“alpha”: 0.01,
“max_iter”: 10,
“early_stop”: “diff”,
“batch_size”: 500,
“learning_rate”: 0.15,
“decay”: 1,
“decay_sqrt”: true,
“init_param”: {
“init_method”: “zeros”
},
“encrypt_param”: {
“method”: null
},
“cv_param”: {
“n_splits”: 4,
“shuffle”: true,
“random_seed”: 33,
“need_cv”: false
}
}
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!