先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
===================================================================================
LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search
-
Paper: https://arxiv.org/abs/2104.14545
-
Code: https://github.com/researchmm/LightTrack
Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark
-
Homepage: https://sites.google.com/view/langtrackbenchmark/
-
Paper: https://arxiv.org/abs/2103.16746
-
Evaluation Toolkit: https://github.com/wangxiao5791509/TNL2K_evaluation_toolkit
-
Demo Video: https://www.youtube.com/watch?v=7lvVDlkkff0&ab_channel=XiaoWang
IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking
-
Paper: https://arxiv.org/abs/2103.14938
-
Code: https://github.com/VISION-SJTU/IoUattack
Graph Attention Tracking
-
Paper: https://arxiv.org/abs/2011.11204
-
Code: https://github.com/ohhhyeahhh/SiamGAT
Rotation Equivariant Siamese Networks for Tracking
-
Paper: https://arxiv.org/abs/2012.13078
-
Code: None
Track to Detect and Segment: An Online Multi-Object Tracker
-
Homepage: https://jialianwu.com/projects/TraDeS.html
-
Paper: None
-
Code: None
Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking
-
Paper(Oral): https://arxiv.org/abs/2103.11681
-
Code: https://github.com/594422814/TransformerTrack
Transformer Tracking
-
Paper: https://arxiv.org/abs/2103.15436
-
Code: https://github.com/chenxin-dlut/TransT
Tracking Pedestrian Heads in Dense Crowd
-
Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
-
Code1: https://github.com/Sentient07/HeadHunter
-
Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
-
Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
Multiple Object Tracking with Correlation Learning
-
Paper: https://arxiv.org/abs/2104.03541
-
Code: None
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking
-
Paper: https://arxiv.org/abs/2012.02337
-
Code: None
Learning a Proposal Classifier for Multiple Object Tracking
-
Paper: https://arxiv.org/abs/2103.07889
-
Code: https://github.com/daip13/LPC_MOT.git
Track to Detect and Segment: An Online Multi-Object Tracker
-
Homepage: https://jialianwu.com/projects/TraDeS.html
-
Paper: https://arxiv.org/abs/2103.08808
-
Code: https://github.com/JialianW/TraDeS
======================================================================================
1. HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
-
作者单位: Facebook AI, 巴伊兰大学, 特拉维夫大学
-
Homepage: https://nirkin.com/hyperseg/
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Nirkin_HyperSeg_Patch-Wise_Hypernetwork_for_Real-Time_Semantic_Segmentation_CVPR_2021_paper.pdf
-
Code: https://github.com/YuvalNirkin/hyperseg
2. Rethinking BiSeNet For Real-time Semantic Segmentation
-
作者单位: 美团
-
Paper: https://arxiv.org/abs/2104.13188
-
Code: https://github.com/MichaelFan01/STDC-Seg
3. Progressive Semantic Segmentation
-
作者单位: VinAI Research, VinUniversity, 阿肯色大学, 石溪大学
-
Paper: https://arxiv.org/abs/2104.03778
-
Code: https://github.com/VinAIResearch/MagNet
4. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
-
作者单位: 复旦大学, 牛津大学, 萨里大学, 腾讯优图, Facebook AI
-
Homepage: https://fudan-zvg.github.io/SETR
-
Paper: https://arxiv.org/abs/2012.15840
-
Code: https://github.com/fudan-zvg/SETR
5. Capturing Omni-Range Context for Omnidirectional Segmentation
-
作者单位: 卡尔斯鲁厄理工学院, 卡尔·蔡司, 华为
-
Paper: https://arxiv.org/abs/2103.05687
-
Code: None
6. Learning Statistical Texture for Semantic Segmentation
-
作者单位: 北航, 商汤科技
-
Paper: https://arxiv.org/abs/2103.04133
-
Code: None
7. InverseForm: A Loss Function for Structured Boundary-Aware Segmentation
-
作者单位: 高通AI研究院
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Borse_InverseForm_A_Loss_Function_for_Structured_Boundary-Aware_Segmentation_CVPR_2021_paper.html
-
Code: None
8. DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation
-
作者单位: Joyy Inc, 快手, 北航等
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_DCNAS_Densely_Connected_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2021_paper.html
-
Code: None
9. Railroad Is Not a Train: Saliency As Pseudo-Pixel Supervision for Weakly Supervised Semantic Segmentation
-
作者单位: 延世大学, 成均馆大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lee_Railroad_Is_Not_a_Train_Saliency_As_Pseudo-Pixel_Supervision_for_CVPR_2021_paper.html
-
Code: https://github.com/halbielee/EPS
10. Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation
-
作者单位: 延世大学
-
Homepage: https://cvlab.yonsei.ac.kr/projects/BANA/
-
Paper: https://arxiv.org/abs/2104.00905
-
Code: None
11. Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation
-
作者单位: 南京理工大学, MBZUAI, 电子科技大学, 阿德莱德大学, 悉尼科技大学
-
Paper: https://arxiv.org/abs/2103.14581
-
Code: https://github.com/NUST-Machine-Intelligence-Laboratory/nsrom
12. Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation
-
作者单位: 北京理工大学, 美团
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wu_Embedded_Discriminative_Attention_Mechanism_for_Weakly_Supervised_Semantic_Segmentation_CVPR_2021_paper.html
-
Code: https://github.com/allenwu97/EDAM
13. BBAM: Bounding Box Attribution Map for Weakly Supervised Semantic and Instance Segmentation
-
作者单位: 首尔大学
-
Paper: https://arxiv.org/abs/2103.08907
-
Code: https://github.com/jbeomlee93/BBAM
14. Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
-
作者单位: 北京大学, 微软亚洲研究院
-
Paper: https://arxiv.org/abs/2106.01226
-
Code: https://github.com/charlesCXK/TorchSemiSeg
15. Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation
-
作者单位: 华为, 大连理工大学, 北京大学
-
Paper: https://arxiv.org/abs/2103.04705
-
Code: None
16. Semi-Supervised Semantic Segmentation With Directional Context-Aware Consistency
-
作者单位: 香港中文大学, 思谋科技, 牛津大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Lai_Semi-Supervised_Semantic_Segmentation_With_Directional_Context-Aware_Consistency_CVPR_2021_paper.html
-
Code: None
17. Semantic Segmentation With Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization
-
作者单位: NVIDIA, 多伦多大学, 耶鲁大学, MIT, Vector Institute
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_Semantic_Segmentation_With_Generative_Models_Semi-Supervised_Learning_and_Strong_Out-of-Domain_CVPR_2021_paper.html
-
Code: https://nv-tlabs.github.io/semanticGAN/
18. Three Ways To Improve Semantic Segmentation With Self-Supervised Depth Estimation
-
作者单位: ETH Zurich, 伯恩大学, 鲁汶大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hoyer_Three_Ways_To_Improve_Semantic_Segmentation_With_Self-Supervised_Depth_Estimation_CVPR_2021_paper.html
-
Code: https://github.com/lhoyer/improving_segmentation_with_selfsupervised_depth
19. Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain Adaptive Semantic Segmentation
-
作者单位: ETH Zurich, 鲁汶大学, 电子科技大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Gong_Cluster_Split_Fuse_and_Update_Meta-Learning_for_Open_Compound_Domain_CVPR_2021_paper.html
-
Code: None
20. Source-Free Domain Adaptation for Semantic Segmentation
-
作者单位: 华东师范大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Source-Free_Domain_Adaptation_for_Semantic_Segmentation_CVPR_2021_paper.html
-
Code: None
21. Uncertainty Reduction for Model Adaptation in Semantic Segmentation
-
作者单位: Idiap Research Institute, EPFL, 日内瓦大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/S_Uncertainty_Reduction_for_Model_Adaptation_in_Semantic_Segmentation_CVPR_2021_paper.html
-
Code: https://git.io/JthPp
22. Self-Supervised Augmentation Consistency for Adapting Semantic Segmentation
-
作者单位: 达姆施塔特工业大学, hessian.AI
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Araslanov_Self-Supervised_Augmentation_Consistency_for_Adapting_Semantic_Segmentation_CVPR_2021_paper.html
-
Code: https://github.com/visinf/da-sac
23. RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening
-
作者单位: LG AI研究院, KAIST等
-
Paper: https://arxiv.org/abs/2103.15597
-
Code: https://github.com/shachoi/RobustNet
24. Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric Alignment and Category-Center Regularization
-
作者单位: 香港大学, 深睿医疗
-
Paper: https://arxiv.org/abs/2103.13041
-
Code: None
25. MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation
-
作者单位: 香港城市大学, 百度
-
Paper: https://arxiv.org/abs/2103.05254
-
Code: https://github.com/cyang-cityu/MetaCorrection
26. Multi-Source Domain Adaptation with Collaborative Learning for Semantic Segmentation
-
作者单位: 华为云, 华为诺亚, 大连理工大学
-
Paper: https://arxiv.org/abs/2103.04717
-
Code: None
27. Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation
-
作者单位: 中国科学技术大学, 微软亚洲研究院
-
Paper: https://arxiv.org/abs/2101.10979
-
Code: https://github.com/microsoft/ProDA
28. DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation
-
作者单位: 南卡罗来纳大学, 天远视科技
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wu_DANNet_A_One-Stage_Domain_Adaptation_Network_for_Unsupervised_Nighttime_Semantic_CVPR_2021_paper.html
-
Code: https://github.com/W-zx-Y/DANNet
29. Scale-Aware Graph Neural Network for Few-Shot Semantic Segmentation
-
作者单位: MBZUAI, IIAI, 哈工大
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Xie_Scale-Aware_Graph_Neural_Network_for_Few-Shot_Semantic_Segmentation_CVPR_2021_paper.html
-
Code: None
30. Anti-Aliasing Semantic Reconstruction for Few-Shot Semantic Segmentation
-
作者单位: 国科大, 清华大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Anti-Aliasing_Semantic_Reconstruction_for_Few-Shot_Semantic_Segmentation_CVPR_2021_paper.html
-
Code: https://github.com/Bibkiller/ASR
31. PiCIE: Unsupervised Semantic Segmentation Using Invariance and Equivariance in Clustering
-
作者单位: UT-Austin, 康奈尔大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Cho_PiCIE_Unsupervised_Semantic_Segmentation_Using_Invariance_and_Equivariance_in_Clustering_CVPR_2021_paper.html
-
Code: https:// github.com/janghyuncho/PiCIE
32. VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild
-
作者单位: 浙江大学, 百度, 悉尼科技大学
-
Homepage: https://www.vspwdataset.com/
-
Paper: https://www.vspwdataset.com/CVPR2021__miao.pdf
-
GitHub: https://github.com/sssdddwww2/vspw_dataset_download
33. Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations
-
作者单位: 帕多瓦大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Michieli_Continual_Semantic_Segmentation_via_Repulsion-Attraction_of_Sparse_and_Disentangled_Latent_CVPR_2021_paper.html
-
Code: https://lttm.dei.unipd.it/paper_data/SDR/
34. Exploit Visual Dependency Relations for Semantic Segmentation
-
作者单位: 伊利诺伊大学芝加哥分校
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Exploit_Visual_Dependency_Relations_for_Semantic_Segmentation_CVPR_2021_paper.html
-
Code: None
35. Revisiting Superpixels for Active Learning in Semantic Segmentation With Realistic Annotation Costs
-
作者单位: Institute for Infocomm Research, 新加坡国立大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Cai_Revisiting_Superpixels_for_Active_Learning_in_Semantic_Segmentation_With_Realistic_CVPR_2021_paper.html
-
Code: None
36. PLOP: Learning without Forgetting for Continual Semantic Segmentation
-
作者单位: 索邦大学, Heuritech, Datakalab, Valeo.ai
-
Paper: https://arxiv.org/abs/2011.11390
-
Code: https://github.com/arthurdouillard/CVPR2021_PLOP
37. 3D-to-2D Distillation for Indoor Scene Parsing
-
作者单位: 香港中文大学, 香港大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Liu_3D-to-2D_Distillation_for_Indoor_Scene_Parsing_CVPR_2021_paper.html
-
Code: None
38. Bidirectional Projection Network for Cross Dimension Scene Understanding
-
作者单位: 香港中文大学, 牛津大学等
-
Paper(Oral): https://arxiv.org/abs/2103.14326
-
Code: https://github.com/wbhu/BPNet
39. PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation
-
作者单位: 北京大学, 中科院, 国科大, ETH Zurich, 商汤科技等
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Li_PointFlow_Flowing_Semantics_Through_Points_for_Aerial_Image_Segmentation_CVPR_2021_paper.html
-
Code: https://github.com/lxtGH/PFSegNets
======================================================================================
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation
-
Paper: https://arxiv.org/abs/2011.09876
-
Code: https://github.com/aliyun/DCT-Mask
Incremental Few-Shot Instance Segmentation
-
Paper: https://arxiv.org/abs/2105.05312
-
Code: https://github.com/danganea/iMTFA
A^2-FPN: Attention Aggregation based Feature Pyramid Network for Instance Segmentation
-
Paper: https://arxiv.org/abs/2105.03186
-
Code: None
RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features
-
Paper: https://arxiv.org/abs/2104.08569
-
Code: https://github.com/zhanggang001/RefineMask/
Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation
-
Paper: https://arxiv.org/abs/2104.05239
-
Code: https://github.com/tinyalpha/BPR
Multi-Scale Aligned Distillation for Low-Resolution Detection
-
Paper: https://jiaya.me/papers/ms_align_distill_cvpr21.pdf
-
Code: https://github.com/Jia-Research-Lab/MSAD
Boundary IoU: Improving Object-Centric Image Segmentation Evaluation
-
Homepage: https://bowenc0221.github.io/boundary-iou/
-
Paper: https://arxiv.org/abs/2103.16562
-
Code: https://github.com/bowenc0221/boundary-iou-api
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
-
Paper: https://arxiv.org/abs/2103.12340
-
Code: https://github.com/lkeab/BCNet
Zero-shot instance segmentation(Not Sure)
-
Paper: None
-
Code: https://github.com/CVPR2021-pape-id-1395/CVPR2021-paper-id-1395
STMask: Spatial Feature Calibration and Temporal Fusion for Effective One-stage Video Instance Segmentation
-
Paper: http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
-
Code: https://github.com/MinghanLi/STMask
End-to-End Video Instance Segmentation with Transformers
-
Paper(Oral): https://arxiv.org/abs/2011.14503
-
Code: https://github.com/Epiphqny/VisTR
======================================================================================
ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation
-
Paper: https://arxiv.org/abs/2012.05258
-
Code: https://github.com/joe-siyuan-qiao/ViP-DeepLab
-
Dataset: https://github.com/joe-siyuan-qiao/ViP-DeepLab
Part-aware Panoptic Segmentation
-
Paper: https://arxiv.org/abs/2106.06351
-
Code: https://github.com/tue-mps/panoptic_parts
-
Dataset: https://github.com/tue-mps/panoptic_parts
Exemplar-Based Open-Set Panoptic Segmentation Network
-
Homepage: https://cv.snu.ac.kr/research/EOPSN/
-
Paper: https://arxiv.org/abs/2105.08336
-
Code: https://github.com/jd730/EOPSN
MaX-DeepLab: End-to-End Panoptic Segmentation With Mask Transformers
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_MaX-DeepLab_End-to-End_Panoptic_Segmentation_With_Mask_Transformers_CVPR_2021_paper.html
-
Code: None
Panoptic Segmentation Forecasting
-
Paper: https://arxiv.org/abs/2104.03962
-
Code: https://github.com/nianticlabs/panoptic-forecasting
Fully Convolutional Networks for Panoptic Segmentation
-
Paper: https://arxiv.org/abs/2012.00720
-
Code: https://github.com/yanwei-li/PanopticFCN
Cross-View Regularization for Domain Adaptive Panoptic Segmentation
-
Paper: https://arxiv.org/abs/2103.02584
-
Code: None
=================================================================
1. Learning Calibrated Medical Image Segmentation via Multi-Rater Agreement Modeling
-
作者单位: 腾讯天衍实验室, 北京同仁医院
-
Paper(Best Paper Candidate): https://openaccess.thecvf.com/content/CVPR2021/html/Ji_Learning_Calibrated_Medical_Image_Segmentation_via_Multi-Rater_Agreement_Modeling_CVPR_2021_paper.html
-
Code: https://github.com/jiwei0921/MRNet/
2. Every Annotation Counts: Multi-Label Deep Supervision for Medical Image Segmentation
-
作者单位: 卡尔斯鲁厄理工学院, 卡尔·蔡司等
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Reiss_Every_Annotation_Counts_Multi-Label_Deep_Supervision_for_Medical_Image_Segmentation_CVPR_2021_paper.html
-
Code: None
3. FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space
-
作者单位: 香港中文大学, 香港理工大学
-
Paper: https://arxiv.org/abs/2103.06030
-
Code: https://github.com/liuquande/FedDG-ELCFS
4. DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation
-
作者单位: 约翰斯·霍普金斯大大学, NVIDIA
-
Paper(Oral): https://arxiv.org/abs/2103.15954
-
Code: None
5. DARCNN: Domain Adaptive Region-Based Convolutional Neural Network for Unsupervised Instance Segmentation in Biomedical Images
-
作者单位: 斯坦福大学
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Hsu_DARCNN_Domain_Adaptive_Region-Based_Convolutional_Neural_Network_for_Unsupervised_Instance_CVPR_2021_paper.html
-
Code: None
视频目标分割(Video-Object-Segmentation)
============================================================================================
Learning Position and Target Consistency for Memory-based Video Object Segmentation
-
Paper: https://arxiv.org/abs/2104.04329
-
Code: None
SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation
-
Paper(Oral): https://arxiv.org/abs/2101.08833
-
Code: https://github.com/dukebw/SSTVOS
交互式视频目标分割(Interactive-Video-Object-Segmentation)
===========================================================================================================
Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion
-
Homepage: https://hkchengrex.github.io/MiVOS/
-
Paper: https://arxiv.org/abs/2103.07941
-
Code: https://github.com/hkchengrex/MiVOS
-
Demo: https://hkchengrex.github.io/MiVOS/video.html#partb
Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild
-
Paper: https://arxiv.org/abs/2103.10391
-
Code: https://github.com/svip-lab/IVOS-W
====================================================================================
Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
-
Paper: https://arxiv.org/abs/2104.02628
-
Code: https://github.com/JingZhang617/Joint_COD_SOD
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion
-
Paper(Oral): https://arxiv.org/abs/2103.11832
-
Code: https://github.com/sunpeng1996/DSA2F
伪装物体检测(Camouflaged Object Detection)
===============================================================================================
Uncertainty-aware Joint Salient Object and Camouflaged Object Detection
-
Paper: https://arxiv.org/abs/2104.02628
-
Code: https://github.com/JingZhang617/Joint_COD_SOD
协同显著性检测(Co-Salient Object Detection)
===============================================================================================
Group Collaborative Learning for Co-Salient Object Detection
-
Paper: https://arxiv.org/abs/2104.01108
-
Code: https://github.com/fanq15/GCoNet
=================================================================================
Semantic Image Matting
-
Paper: https://arxiv.org/abs/2104.08201
-
Code: https://github.com/nowsyn/SIM
-
Dataset: https://github.com/nowsyn/SIM
行人重识别(Person Re-identification)
==========================================================================================
Generalizable Person Re-identification with Relevance-aware Mixture of Experts
-
Paper: https://arxiv.org/abs/2105.09156
-
Code: None
Unsupervised Multi-Source Domain Adaptation for Person Re-Identification
-
Paper: https://arxiv.org/abs/2104.12961
-
Code: None
Combined Depth Space based Architecture Search For Person Re-identification
-
Paper: https://arxiv.org/abs/2104.04163
-
Code: None
==============================================================================
Anchor-Free Person Search
-
Paper: https://arxiv.org/abs/2103.11617
-
Code: https://github.com/daodaofr/AlignPS
-
Interpretation: 首个无需锚框(Anchor-Free)的行人搜索框架 | CVPR 2021
视频理解/行为识别(Video Understanding)
=========================================================================================
Temporal-Relational CrossTransformers for Few-Shot Action Recognition
-
Paper: https://arxiv.org/abs/2101.06184
-
Code: https://github.com/tobyperrett/trx
FrameExit: Conditional Early Exiting for Efficient Video Recognition
-
Paper(Oral): https://arxiv.org/abs/2104.13400
-
Code: None
No frame left behind: Full Video Action Recognition
-
Paper: https://arxiv.org/abs/2103.15395
-
Code: None
Learning Salient Boundary Feature for Anchor-free Temporal Action Localization
-
Paper: https://arxiv.org/abs/2103.13137
-
Code: None
Temporal Context Aggregation Network for Temporal Action Proposal Refinement
-
Paper: https://arxiv.org/abs/2103.13141
-
Code: None
-
Interpretation: CVPR 2021 | TCANet:最强时序动作提名修正网络
ACTION-Net: Multipath Excitation for Action Recognition
-
Paper: https://arxiv.org/abs/2103.07372
-
Code: https://github.com/V-Sense/ACTION-Net
Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning
-
Homepage: https://fingerrec.github.io/index_files/jinpeng/papers/CVPR2021/project_website.html
-
Paper: https://arxiv.org/abs/2009.05769
-
Code: https://github.com/FingerRec/BE
TDN: Temporal Difference Networks for Efficient Action Recognition
-
Paper: https://arxiv.org/abs/2012.10071
-
Code: https://github.com/MCG-NJU/TDN
=================================================================================
A 3D GAN for Improved Large-pose Facial Recognition
-
Paper: https://arxiv.org/abs/2012.10545
-
Code: None
MagFace: A Universal Representation for Face Recognition and Quality Assessment
-
Paper(Oral): https://arxiv.org/abs/2103.06627
-
Code: https://github.com/IrvingMeng/MagFace
WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition
-
Homepage: https://www.face-benchmark.org/
-
Paper: https://arxiv.org/abs/2103.04098
-
Dataset: https://www.face-benchmark.org/
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework
-
Paper(Oral): https://arxiv.org/abs/2103.01520
-
Code: https://github.com/Hzzone/MTLFace
-
Dataset: https://github.com/Hzzone/MTLFace
===============================================================================
HLA-Face: Joint High-Low Adaptation for Low Light Face Detection
-
Homepage: https://daooshee.github.io/HLA-Face-Website/
-
Paper: https://arxiv.org/abs/2104.01984
-
Code: https://github.com/daooshee/HLA-Face-Code
CRFace: Confidence Ranker for Model-Agnostic Face Detection Refinement
-
Paper: https://arxiv.org/abs/2103.07017
-
Code: None
=====================================================================================
Cross Modal Focal Loss for RGBD Face Anti-Spoofing
-
Paper: https://arxiv.org/abs/2103.00948
-
Code: None
Deepfake检测(Deepfake Detection)
=========================================================================================
Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain
-
Paper:https://arxiv.org/abs/2103.01856
-
Code: None
Multi-attentional Deepfake Detection
-
Paper:https://arxiv.org/abs/2103.02406
-
Code: None
=================================================================================
Continuous Face Aging via Self-estimated Residual Age Embedding
-
Paper: https://arxiv.org/abs/2105.00020
-
Code: None
PML: Progressive Margin Loss for Long-tailed Age Classification
-
Paper: https://arxiv.org/abs/2103.02140
-
Code: None
人脸表情识别(Facial Expression Recognition)
================================================================================================
Affective Processes: stochastic modelling of temporal context for emotion and facial expression recognition
-
Paper: https://arxiv.org/abs/2103.13372
-
Code: None
====================================================================
MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes
-
Paper: https://arxiv.org/abs/2103.14211
-
Code: None
==============================================================================
Differentiable Multi-Granularity Human Representation Learning for Instance-Aware Human Semantic Parsing
-
Paper: https://arxiv.org/abs/2103.04570
-
Code: https://github.com/tfzhou/MG-HumanParsing
2D/3D人体姿态估计(2D/3D Human Pose Estimation)
===================================================================================================
ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search
-
Paper: ttps://arxiv.org/abs/2105.10154
-
Code: None
When Human Pose Estimation Meets Robustness: Adversarial Algorithms and Benchmarks
-
Paper: https://arxiv.org/abs/2105.06152
-
Code: None
Pose Recognition with Cascade Transformers
-
Paper: https://arxiv.org/abs/2104.06976
-
Code: https://github.com/mlpc-ucsd/PRTR
DCPose: Deep Dual Consecutive Network for Human Pose Estimation
-
Paper: https://arxiv.org/abs/2103.07254
-
Code: https://github.com/Pose-Group/DCPose
End-to-End Human Pose and Mesh Reconstruction with Transformers
-
Paper: https://arxiv.org/abs/2012.09760
-
Code: https://github.com/microsoft/MeshTransformer
PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation
-
Paper(Oral): https://arxiv.org/abs/2105.02465
-
Code: https://github.com/jfzhang95/PoseAug
Camera-Space Hand Mesh Recovery via Semantic Aggregation and Adaptive 2D-1D Registration
-
Paper: https://arxiv.org/abs/2103.02845
-
Code: https://github.com/SeanChenxy/HandMesh
Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
-
Paper: https://arxiv.org/abs/2104.01797
-
https://github.com/3dpose/3D-Multi-Person-Pose
HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation
-
Homepage: https://jeffli.site/HybrIK/
-
Paper: https://arxiv.org/abs/2011.14672
-
Code: https://github.com/Jeff-sjtu/HybrIK
动物姿态估计(Animal Pose Estimation)
=========================================================================================
From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose Estimation
-
Paper: https://arxiv.org/abs/2103.14843
-
Code: None
=======================================================================================
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time
-
Homepage: https://stevenlsw.github.io/Semi-Hand-Object/
-
Paper: https://arxiv.org/abs/2106.05266
-
Code: https://github.com/stevenlsw/Semi-Hand-Object
===================================================================================
POSEFusion: Pose-guided Selective Fusion for Single-view Human Volumetric Capture
-
Homepage: http://www.liuyebin.com/posefusion/posefusion.html
-
Paper(Oral): https://arxiv.org/abs/2103.15331
-
Code: None
=======================================================================================
Fourier Contour Embedding for Arbitrary-Shaped Text Detection
-
Paper: https://arxiv.org/abs/2104.10442
-
Code: None
场景文本识别(Scene Text Recognition)
=========================================================================================
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition
-
Paper: https://arxiv.org/abs/2103.06495
-
Code: https://github.com/FangShancheng/ABINet
===============================================================
Checkerboard Context Model for Efficient Learned Image Compression
-
Paper: https://arxiv.org/abs/2103.15306
-
Code: None
Slimmable Compressive Autoencoders for Practical Neural Image Compression
-
Paper: https://arxiv.org/abs/2103.15726
-
Code: None
Attention-guided Image Compression by Deep Reconstruction of Compressive Sensed Saliency Skeleton
-
Paper: https://arxiv.org/abs/2103.15368
-
Code: None
=====================================================================
Teachers Do More Than Teach: Compressing Image-to-Image Models
-
Paper: https://arxiv.org/abs/2103.03467
-
Code: https://github.com/snap-research/CAT
Dynamic Slimmable Network
-
Paper: https://arxiv.org/abs/2103.13258
-
Code: https://github.com/changlin31/DS-Net
Network Quantization with Element-wise Gradient Scaling
-
Paper: https://arxiv.org/abs/2104.00903
-
Code: None
Zero-shot Adversarial Quantization
-
Paper(Oral): https://arxiv.org/abs/2103.15263
-
Code: https://git.io/Jqc0y
Learnable Companding Quantization for Accurate Low-bit Neural Networks
-
Paper: https://arxiv.org/abs/2103.07156
-
Code: None
=======================================================================================
Distilling Knowledge via Knowledge Review
-
Paper: https://arxiv.org/abs/2104.09044
-
Code: https://github.com/Jia-Research-Lab/ReviewKD
Distilling Object Detectors via Decoupled Features
-
Paper: https://arxiv.org/abs/2103.14475
-
Code: https://github.com/ggjy/DeFeat.pytorch
=================================================================================
Image Super-Resolution with Non-Local Sparse Attention
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Mei_Image_Super-Resolution_With_Non-Local_Sparse_Attention_CVPR_2021_paper.pdf
-
Code: https://github.com/HarukiYqM/Non-Local-Sparse-Attention
Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline
-
Homepage: http://mepro.bjtu.edu.cn/resource.html
-
Paper: https://arxiv.org/abs/2104.06174
-
Code: None
ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
-
Paper: https://arxiv.org/abs/2103.04039
-
Code: https://github.com/Xiangtaokong/ClassSR
AdderSR: Towards Energy Efficient Image Super-Resolution
-
Paper: https://arxiv.org/abs/2009.08891
-
Code: None
=======================================================================
Contrastive Learning for Compact Single Image Dehazing
-
Paper: https://arxiv.org/abs/2104.09367
-
Code: https://github.com/GlassyWu/AECR-Net
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
-
Paper: None
-
Code: https://github.com/CS-GangXu/TMNet
==================================================================================
Multi-Stage Progressive Image Restoration
-
Paper: https://arxiv.org/abs/2102.02808
-
Code: https://github.com/swz30/MPRNet
=================================================================================
PD-GAN: Probabilistic Diverse GAN for Image Inpainting
-
Paper: https://arxiv.org/abs/2105.02201
-
Code: https://github.com/KumapowerLIU/PD-GAN
TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations
-
Homepage: https://yzhouas.github.io/projects/TransFill/index.html
-
Paper: https://arxiv.org/abs/2103.15982
-
Code: None
==============================================================================
StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
-
Paper: https://arxiv.org/abs/2104.14754
-
Code: https://github.com/naver-ai/StyleMapGAN
-
Demo Video: https://youtu.be/qCapNyRA_Ng
High-Fidelity and Arbitrary Face Editing
-
Paper: https://arxiv.org/abs/2103.15814
-
Code: None
Anycost GANs for Interactive Image Synthesis and Editing
-
Paper: https://arxiv.org/abs/2103.03243
-
Code: https://github.com/mit-han-lab/anycost-gan
PISE: Person Image Synthesis and Editing with Decoupled GAN
-
Paper: https://arxiv.org/abs/2103.04023
-
Code: https://github.com/Zhangjinso/PISE
DeFLOCNet: Deep Image Editing via Flexible Low-level Controls
-
Paper: http://raywzy.com/
-
Code: http://raywzy.com/
Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
-
Paper: None
-
Code: None
=================================================================================
Towards Accurate Text-based Image Captioning with Content Diversity Exploration
-
Paper: https://arxiv.org/abs/2105.03236
-
Code: None
================================================================================
DG-Font: Deformable Generative Networks for Unsupervised Font Generation
-
Paper: https://arxiv.org/abs/2104.03064
-
Code: https://github.com/ecnuycxie/DG-Font
==============================================================================
LoFTR: Detector-Free Local Feature Matching with Transformers
-
Homepage: https://zju3dv.github.io/loftr/
-
Paper: https://arxiv.org/abs/2104.00680
-
Code: https://github.com/zju3dv/LoFTR
Convolutional Hough Matching Networks
-
Homapage: http://cvlab.postech.ac.kr/research/CHM/
-
Paper(Oral): https://arxiv.org/abs/2103.16831
-
Code: None
===============================================================================
Bridging the Visual Gap: Wide-Range Image Blending
-
Paper: https://arxiv.org/abs/2103.15149
-
Code: https://github.com/julia0607/Wide-Range-Image-Blending
===================================================================================
Robust Reflection Removal with Reflection-free Flash-only Cues
-
Paper: https://arxiv.org/abs/2103.04273
-
Code: https://github.com/ChenyangLEI/flash-reflection-removal
3D点云分类(3D Point Clouds Classification)
=================================================================================================
Equivariant Point Network for 3D Point Cloud Analysis
-
Paper: https://arxiv.org/abs/2103.14147
-
Code: None
PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
-
Paper: https://arxiv.org/abs/2103.14635
-
Code: https://github.com/CVMI-Lab/PAConv
======================================================================================
3D-MAN: 3D Multi-frame Attention Network for Object Detection
-
Paper: https://arxiv.org/abs/2103.16054
-
Code: None
Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
-
Paper: https://arxiv.org/abs/2104.06114
-
Code: https://github.com/cheng052/BRNet
HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection
-
Homepage: https://cvlab.yonsei.ac.kr/projects/HVPR/
-
Paper: https://arxiv.org/abs/2104.00902
-
Code: https://github.com/cvlab-yonsei/HVPR
LiDAR R-CNN: An Efficient and Universal 3D Object Detector
-
Paper: https://arxiv.org/abs/2103.15297
-
Code: https://github.com/tusimple/LiDAR_RCNN
M3DSSD: Monocular 3D Single Stage Object Detector
-
Paper: https://arxiv.org/abs/2103.13164
-
Code: https://github.com/mumianyuxin/M3DSSD
SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud
-
Paper: None
-
Code: https://github.com/Vegeta2020/SE-SSD
Center-based 3D Object Detection and Tracking
-
Paper: https://arxiv.org/abs/2006.11275
-
Code: https://github.com/tianweiy/CenterPoint
Categorical Depth Distribution Network for Monocular 3D Object Detection
-
Paper: https://arxiv.org/abs/2103.01100
-
Code: None
3D语义分割(3D Semantic Segmentation)
===========================================================================================
Bidirectional Projection Network for Cross Dimension Scene Understanding
-
Paper(Oral): https://arxiv.org/abs/2103.14326
-
Code: https://github.com/wbhu/BPNet
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion
-
Paper: https://arxiv.org/abs/2103.07074
-
Code: https://github.com/ShiQiu0419/BAAF-Net
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
-
Paper: https://arxiv.org/abs/2011.10033
-
Code: https://github.com/xinge008/Cylinder3D
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges
-
Homepage: https://github.com/QingyongHu/SensatUrban
-
Paper: http://arxiv.org/abs/2009.03137
-
Code: https://github.com/QingyongHu/SensatUrban
-
Dataset: https://github.com/QingyongHu/SensatUrban
3D全景分割(3D Panoptic Segmentation)
===========================================================================================
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation
-
Paper: https://arxiv.org/abs/2103.14962
-
Code: https://github.com/edwardzhou130/Panoptic-PolarNet
======================================================================================
Center-based 3D Object Detection and Tracking
-
Paper: https://arxiv.org/abs/2006.11275
-
Code: https://github.com/tianweiy/CenterPoint
3D点云配准(3D Point Cloud Registration)
==============================================================================================
ReAgent: Point Cloud Registration using Imitation and Reinforcement Learning
-
Paper: https://arxiv.org/abs/2103.15231
-
Code: None
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
-
Paper: https://arxiv.org/abs/2103.05465
-
Code: https://github.com/XuyangBai/PointDSC
PREDATOR: Registration of 3D Point Clouds with Low Overlap
-
Paper: https://arxiv.org/abs/2011.13005
-
Code: https://github.com/ShengyuH/OverlapPredator
3D点云补全(3D Point Cloud Completion)
============================================================================================
Unsupervised 3D Shape Completion through GAN Inversion
-
Homepage: https://junzhezhang.github.io/projects/ShapeInversion/
-
Paper: https://arxiv.org/abs/2104.13366
-
Code: https://github.com/junzhezhang/shape-inversion
Variational Relational Point Completion Network
-
Homepage: https://paul007pl.github.io/projects/VRCNet
-
Paper: https://arxiv.org/abs/2104.10154
-
Code: https://github.com/paul007pl/VRCNet
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion
-
Homepage: https://alphapav.github.io/SpareNet/
-
Paper: https://arxiv.org/abs/2103.02535
-
Code: https://github.com/microsoft/SpareNet
==================================================================================
Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection
-
Paper: http://arxiv.org/abs/2106.07852
-
Code: https://github.com/TencentYoutuResearch/3DFaceReconstruction-LAP
Fully Understanding Generic Objects: Modeling, Segmentation, and Reconstruction
-
Paper: https://arxiv.org/abs/2104.00858
-
Code: None
NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video
-
Homepage: https://zju3dv.github.io/neuralrecon/
-
Paper(Oral): https://arxiv.org/abs/2104.00681
-
Code: https://github.com/zju3dv/NeuralRecon
=====================================================================================
FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism
-
Paper(Oral): https://arxiv.org/abs/2103.07054
-
Code: https://github.com/DC1991/FS-Net
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation
-
Paper: http://arxiv.org/abs/2102.12145
-
code: https://git.io/GDR-Net
FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation
-
Paper: https://arxiv.org/abs/2103.02242
-
Code: https://github.com/ethnhe/FFB6D
=================================================================
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose
-
Paper: https://arxiv.org/abs/2103.09213
-
Code: https://github.com/cvg/pixloc
=================================================================================
S2R-DepthNet: Learning a Generalizable Depth-specific Structural Representation
-
Paper(Oral): https://arxiv.org/abs/2104.00877
-
Code: None
Beyond Image to Depth: Improving Depth Prediction using Echoes
-
Homepage: https://krantiparida.github.io/projects/bimgdepth.html
-
Paper: https://arxiv.org/abs/2103.08468
-
Code: https://github.com/krantiparida/beyond-image-to-depth
S3: Learnable Sparse Signal Superdensity for Guided Depth Estimation
-
Paper: https://arxiv.org/abs/2103.02396
-
Code: None
Depth from Camera Motion and Object Detection
-
Paper: https://arxiv.org/abs/2103.01468
-
Code: https://github.com/griffbr/ODMD
-
Dataset: https://github.com/griffbr/ODMD
================================================================================
A Decomposition Model for Stereo Matching
-
Paper: https://arxiv.org/abs/2104.07516
-
Code: None
================================================================================
Self-Supervised Multi-Frame Monocular Scene Flow
-
Paper: https://arxiv.org/abs/2105.02216
-
Code: https://github.com/visinf/multi-mono-sf
RAFT-3D: Scene Flow using Rigid-Motion Embeddings
-
Paper: https://arxiv.org/abs/2012.00726v1
-
Code: None
Learning Optical Flow From Still Images
-
Homepage: https://mattpoggi.github.io/projects/cvpr2021aleotti/
-
Paper: https://mattpoggi.github.io/assets/papers/aleotti2021cvpr.pdf
-
Code: https://github.com/mattpoggi/depthstillation
FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point Clouds
-
Paper: https://arxiv.org/abs/2104.00798
-
Code: None
================================================================================
Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
-
Paper: https://arxiv.org/abs/2105.13680
-
Code: None
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
-
Paper: https://arxiv.org/abs/2010.12035
-
Code: https://github.com/lucastabelini/LaneATT
======================================================================================
Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction
-
Paper(Oral): https://arxiv.org/abs/2104.08277
-
Code: None
===============================================================================
Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark
-
Paper: https://arxiv.org/abs/2105.02440
-
Code: https://github.com/VisDrone/DroneCrowd
-
Dataset: https://github.com/VisDrone/DroneCrowd
=====================================================================================
Enhancing the Transferability of Adversarial Attacks through Variance Tuning
-
Paper: https://arxiv.org/abs/2103.15571
-
Code: https://github.com/JHL-HUST/VT
LiBRe: A Practical Bayesian Approach to Adversarial Detection
-
Paper: https://arxiv.org/abs/2103.14835
-
Code: None
Natural Adversarial Examples
-
Paper: https://arxiv.org/abs/1907.07174
-
Code: https://github.com/hendrycks/natural-adv-examples
================================================================================
StyleMeUp: Towards Style-Agnostic Sketch-Based Image Retrieval
-
Paper: https://arxiv.org/abs/2103.15706
-
COde: None
QAIR: Practical Query-efficient Black-Box Attacks for Image Retrieval
-
Paper: https://arxiv.org/abs/2103.02927
-
Code: None
================================================================================
On Semantic Similarity in Video Retrieval
-
Paper: https://arxiv.org/abs/2103.10095
-
Homepage: https://mwray.github.io/SSVR/
-
Code: https://github.com/mwray/Semantic-Video-Retrieval
=======================================================================================
Cross-Modal Center Loss for 3D Cross-Modal Retrieval
-
Paper: https://arxiv.org/abs/2008.03561
-
Code: https://github.com/LongLong-Jing/Cross-Modal-Center-Loss
Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with Transformers
-
Paper: https://arxiv.org/abs/2103.16553
-
Code: None
Revamping cross-modal recipe retrieval with hierarchical Transformers and self-supervised learning
-
Paper: https://www.amazon.science/publications/revamping-cross-modal-recipe-retrieval-with-hierarchical-transformers-and-self-supervised-learning
-
Code: https://github.com/amzn/image-to-recipe-transformers
=============================================================================
Counterfactual Zero-Shot and Open-Set Visual Recognition
-
Paper: https://arxiv.org/abs/2103.00887
-
Code: https://github.com/yue-zhongqi/gcm-cf
===================================================================================
FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space
-
Paper: https://arxiv.org/abs/2103.06030
-
Code: https://github.com/liuquande/FedDG-ELCFS
视频插帧(Video Frame Interpolation)
==========================================================================================
CDFI: Compression-Driven Network Design for Frame Interpolation
-
Paper: None
-
Code: https://github.com/tding1/CDFI
FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation
-
Homepage: https://tarun005.github.io/FLAVR/
-
Paper: https://arxiv.org/abs/2012.08512
-
Code: https://github.com/tarun005/FLAVR
=================================================================================
Transformation Driven Visual Reasoning
-
homepage: https://hongxin2019.github.io/TVR/
-
Paper: https://arxiv.org/abs/2011.13160
-
Code: https://github.com/hughplay/TVR
================================================================================
GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields
-
Homepage: https://m-niemeyer.github.io/project-pages/giraffe/index.html
-
Paper(Oral): https://arxiv.org/abs/2011.12100
-
Code: https://github.com/autonomousvision/giraffe
-
Demo: http://www.youtube.com/watch?v=fIaDXC-qRSg&vq=hd1080&autoplay=1
Taming Transformers for High-Resolution Image Synthesis
-
Homepage: https://compvis.github.io/taming-transformers/
-
Paper(Oral): https://arxiv.org/abs/2012.09841
-
Code: https://github.com/CompVis/taming-transformers
===============================================================================
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes
-
Homepage: https://virtualhumans.mpi-inf.mpg.de/srf/
-
Paper: https://arxiv.org/abs/2104.06935
Self-Supervised Visibility Learning for Novel View Synthesis
-
Paper: https://arxiv.org/abs/2103.15407
-
Code: None
NeX: Real-time View Synthesis with Neural Basis Expansion
-
Homepage: https://nex-mpi.github.io/
-
Paper(Oral): https://arxiv.org/abs/2103.05606
===============================================================================
Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer
-
Paper: https://arxiv.org/abs/2104.05376
-
Code: https://github.com/PaddlePaddle/PaddleGAN/
==================================================================================
LayoutTransformer: Scene Layout Generation With Conceptual and Spatial Diversity
-
Paper: None
-
Code: None
Variational Transformer Networks for Layout Generation
-
Paper: https://arxiv.org/abs/2104.02416
-
Code: None
================================================================================
Generalizable Person Re-identification with Relevance-aware Mixture of Experts
-
Paper: https://arxiv.org/abs/2105.09156
-
Code: None
RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening
-
Paper: https://arxiv.org/abs/2103.15597
-
Code: https://github.com/shachoi/RobustNet
Adaptive Methods for Real-World Domain Generalization
-
Paper: https://arxiv.org/abs/2103.15796
-
Code: None
FSDR: Frequency Space Domain Randomization for Domain Generalization
-
Paper: https://arxiv.org/abs/2103.02370
-
Code: None
============================================================================
Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation
-
Paper: https://arxiv.org/abs/2104.00808
-
Code: None
Domain Consensus Clustering for Universal Domain Adaptation
-
Paper: http://reler.net/papers/guangrui_cvpr2021.pdf
-
Code: https://github.com/Solacex/Domain-Consensus-Clustering
===================================================================
Towards Open World Object Detection
-
Paper(Oral): https://arxiv.org/abs/2103.02603
-
Code: https://github.com/JosephKJ/OWOD
Exemplar-Based Open-Set Panoptic Segmentation Network
-
Homepage: https://cv.snu.ac.kr/research/EOPSN/
-
Paper: https://arxiv.org/abs/2105.08336
-
Code: https://github.com/jd730/EOPSN
Learning Placeholders for Open-Set Recognition
-
Paper(Oral): https://arxiv.org/abs/2103.15086
-
Code: None
=============================================================================
IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking
-
Paper: https://arxiv.org/abs/2103.14938
-
Code: https://github.com/VISION-SJTU/IoUattack
=========================================================================
HOTR: End-to-End Human-Object Interaction Detection with Transformers
-
Paper: https://arxiv.org/abs/2104.13682
-
Code: None
Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information
-
Paper: https://arxiv.org/abs/2103.05399
-
Code: https://github.com/hitachi-rd-cv/qpic
Reformulating HOI Detection as Adaptive Set Prediction
-
Paper: https://arxiv.org/abs/2103.05983
-
Code: https://github.com/yoyomimi/AS-Net
Detecting Human-Object Interaction via Fabricated Compositional Learning
-
Paper: https://arxiv.org/abs/2103.08214
-
Code: https://github.com/zhihou7/FCL
End-to-End Human Object Interaction Detection with HOI Transformer
-
Paper: https://arxiv.org/abs/2103.04503
-
Code: https://github.com/bbepoch/HoiTransformer
===============================================================================
Auto-Exposure Fusion for Single-Image Shadow Removal
-
Paper: https://arxiv.org/abs/2103.01255
-
Code: https://github.com/tsingqguo/exposure-fusion-shadow-removal
===============================================================================
Parser-Free Virtual Try-on via Distilling Appearance Flows
基于外观流蒸馏的无需人体解析的虚拟换装
-
Paper: https://arxiv.org/abs/2103.04559
-
Code: https://github.com/geyuying/PF-AFN
============================================================================
A Second-Order Approach to Learning with Instance-Dependent Label Noise
-
Paper(Oral): https://arxiv.org/abs/2012.11854
-
Code: https://github.com/UCSC-REAL/CAL
====================================================================================
Real-Time Selfie Video Stabilization
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/papers/Yu_Real-Time_Selfie_Video_Stabilization_CVPR_2021_paper.pdf
-
Code: https://github.com/jiy173/selfievideostabilization
========================================================================
Tracking Pedestrian Heads in Dense Crowd
-
Homepage: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Sundararaman_Tracking_Pedestrian_Heads_in_Dense_Crowd_CVPR_2021_paper.html
-
Code1: https://github.com/Sentient07/HeadHunter
-
Code2: https://github.com/Sentient07/HeadHunter%E2%80%93T
-
Dataset: https://project.inria.fr/crowdscience/project/dense-crowd-head-tracking/
Part-aware Panoptic Segmentation
-
Paper: https://arxiv.org/abs/2106.06351
-
Code: https://github.com/tue-mps/panoptic_parts
-
Dataset: https://github.com/tue-mps/panoptic_parts
Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos
-
Homepage: https://www.yasamin.page/hdnet_tiktok
-
Paper(Oral): https://arxiv.org/abs/2103.03319
-
Code: https://github.com/yasaminjafarian/HDNet_TikTok
-
Dataset: https://www.yasamin.page/hdnet_tiktok#h.jr9ifesshn7v
High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network
-
Paper: https://arxiv.org/abs/2105.09188
-
Code: https://github.com/csjliang/LPTN
-
Dataset: https://github.com/csjliang/LPTN
Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark
-
Paper: https://arxiv.org/abs/2105.02440
-
Code: https://github.com/VisDrone/DroneCrowd
-
Dataset: https://github.com/VisDrone/DroneCrowd
Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets
-
Homepage: https://fidler-lab.github.io/efficient-annotation-cookbook/
-
Paper(Oral): https://arxiv.org/abs/2104.12690
-
Code: https://github.com/fidler-lab/efficient-annotation-cookbook
论文下载链接:
ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation
-
Paper: https://arxiv.org/abs/2012.05258
-
Code: https://github.com/joe-siyuan-qiao/ViP-DeepLab
-
Dataset: https://github.com/joe-siyuan-qiao/ViP-DeepLab
Learning To Count Everything
-
Paper: https://arxiv.org/abs/2104.08391
-
Code: https://github.com/cvlab-stonybrook/LearningToCountEverything
-
Dataset: https://github.com/cvlab-stonybrook/LearningToCountEverything
Semantic Image Matting
-
Paper: https://arxiv.org/abs/2104.08201
-
Code: https://github.com/nowsyn/SIM
-
Dataset: https://github.com/nowsyn/SIM
Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline
-
Homepage: http://mepro.bjtu.edu.cn/resource.html
-
Paper: https://arxiv.org/abs/2104.06174
-
Code: None
Visual Semantic Role Labeling for Video Understanding
-
Homepage: https://vidsitu.org/
-
Paper: https://arxiv.org/abs/2104.00990
-
Code: https://github.com/TheShadow29/VidSitu
-
Dataset: https://github.com/TheShadow29/VidSitu
VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild
-
Homepage: https://www.vspwdataset.com/
-
Paper: https://www.vspwdataset.com/CVPR2021__miao.pdf
-
GitHub: https://github.com/sssdddwww2/vspw_dataset_download
Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark
-
Homepage: https://vap.aau.dk/sewer-ml/
-
Paper: https://arxiv.org/abs/2103.10619
Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark
-
Homepage: https://vap.aau.dk/sewer-ml/
-
Paper: https://arxiv.org/abs/2103.10895
Nutrition5k: Towards Automatic Nutritional Understanding of Generic Food
-
Paper: https://arxiv.org/abs/2103.03375
-
Dataset: None
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges
-
Homepage: https://github.com/QingyongHu/SensatUrban
-
Paper: http://arxiv.org/abs/2009.03137
-
Code: https://github.com/QingyongHu/SensatUrban
-
Dataset: https://github.com/QingyongHu/SensatUrban
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework
-
Paper(Oral): https://arxiv.org/abs/2103.01520
-
Code: https://github.com/Hzzone/MTLFace
-
Dataset: https://github.com/Hzzone/MTLFace
Depth from Camera Motion and Object Detection
-
Paper: https://arxiv.org/abs/2103.01468
-
Code: https://github.com/griffbr/ODMD
-
Dataset: https://github.com/griffbr/ODMD
There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge
-
Homepage: http://rl.uni-freiburg.de/research/multimodal-distill
-
Paper: https://arxiv.org/abs/2103.01353
-
Code: http://rl.uni-freiburg.de/research/multimodal-distill
Scan2Cap: Context-aware Dense Captioning in RGB-D Scans
-
Paper: https://arxiv.org/abs/2012.02206
-
Code: https://github.com/daveredrum/Scan2Cap
-
Dataset: https://github.com/daveredrum/ScanRefer
There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge
-
Paper: https://arxiv.org/abs/2103.01353
-
Code: http://rl.uni-freiburg.de/research/multimodal-distill
-
Dataset: http://rl.uni-freiburg.de/research/multimodal-distill
=====================================================================
Fast and Accurate Model Scaling
-
Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Dollar_Fast_and_Accurate_Model_Scaling_CVPR_2021_paper.html
-
Code: https://github.com/facebookresearch/pycls
Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos
-
Homepage: https://www.yasamin.page/hdnet_tiktok
-
Paper(Oral): https://arxiv.org/abs/2103.03319
-
Code: https://github.com/yasaminjafarian/HDNet_TikTok
-
Dataset: https://www.yasamin.page/hdnet_tiktok#h.jr9ifesshn7v
Omnimatte: Associating Objects and Their Effects in Video
-
Homepage: https://omnimatte.github.io/
-
Paper(Oral): https://arxiv.org/abs/2105.06993
-
Code: https://omnimatte.github.io/#code
Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets
-
Homepage: https://fidler-lab.github.io/efficient-annotation-cookbook/
-
Paper(Oral): https://arxiv.org/abs/2104.12690
-
Code: https://github.com/fidler-lab/efficient-annotation-cookbook
Motion Representations for Articulated Animation
-
Paper: https://arxiv.org/abs/2104.11280
-
Code: https://github.com/snap-research/articulated-animation
Deep Lucas-Kanade Homography for Multimodal Image Alignment
-
Paper: https://arxiv.org/abs/2104.11693
-
Code: https://github.com/placeforyiming/CVPR21-Deep-Lucas-Kanade-Homography
Skip-Convolutions for Efficient Video Processing
-
Paper: https://arxiv.org/abs/2104.11487
-
Code: None
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control
-
Homepage: http://tomasjakab.github.io/KeypointDeformer
-
Paper(Oral): https://arxiv.org/abs/2104.11224
-
Code: https://github.com/tomasjakab/keypoint_deformer/
Learning To Count Everything
-
Paper: https://arxiv.org/abs/2104.08391
-
Code: https://github.com/cvlab-stonybrook/LearningToCountEverything
-
Dataset: https://github.com/cvlab-stonybrook/LearningToCountEverything
SOLD2: Self-supervised Occlusion-aware Line Description and Detection
-
Paper(Oral): https://arxiv.org/abs/2104.03362
-
Code: https://github.com/cvg/SOLD2
Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware Regression
-
Homepage: https://li-wanhua.github.io/POEs/
-
Paper: https://arxiv.org/abs/2103.13629
-
Code: https://github.com/Li-Wanhua/POEs
LEAP: Learning Articulated Occupancy of People
-
Paper: https://arxiv.org/abs/2104.06849
-
Code: None
Visual Semantic Role Labeling for Video Understanding
-
Homepage: https://vidsitu.org/
-
Paper: https://arxiv.org/abs/2104.00990
-
Code: https://github.com/TheShadow29/VidSitu
-
Dataset: https://github.com/TheShadow29/VidSitu
UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles
-
Paper: https://arxiv.org/abs/2104.00946
-
Code: https://github.com/SUTDCV/UAV-Human
Video Prediction Recalling Long-term Motion Context via Memory Alignment Learning
-
Paper(Oral): https://arxiv.org/abs/2104.00924
-
Code: None
Fully Understanding Generic Objects: Modeling, Segmentation, and Reconstruction
-
Paper: https://arxiv.org/abs/2104.00858
-
Code: None
Towards High Fidelity Face Relighting with Realistic Shadows
-
Paper: https://arxiv.org/abs/2104.00825
-
Code: None
BRepNet: A topological message passing system for solid models
-
Paper(Oral): https://arxiv.org/abs/2104.00706
-
Code: None
Visually Informed Binaural Audio Generation without Binaural Audios
-
Homepage: https://sheldontsui.github.io/projects/PseudoBinaural
-
Paper: None
-
GitHub: https://github.com/SheldonTsui/PseudoBinaural_CVPR2021
-
Demo: https://www.youtube.com/watch?v=r-uC2MyAWQc
Exploring intermediate representation for monocular vehicle pose estimation
-
Paper: None
-
Code: https://github.com/Nicholasli1995/EgoNet
Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from RGB
-
Paper(Oral): https://arxiv.org/abs/2103.14708
-
Code: None
Invertible Image Signal Processing
-
Paper: https://arxiv.org/abs/2103.15061
-
Code: https://github.com/yzxing87/Invertible-ISP
Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling
-
Paper: https://arxiv.org/abs/2103.14858
-
Code: None
SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences
-
Paper: https://arxiv.org/abs/2103.14898
-
Code: None
Embedding Transfer with Label Relaxation for Improved Metric Learning
-
Paper: https://arxiv.org/abs/2103.14908
-
Code: None
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes
-
Paper: https://arxiv.org/abs/2103.15076
-
Code: https://github.com/hlei-ziyan/Picasso
Meta-Mining Discriminative Samples for Kinship Verification
-
Paper: https://arxiv.org/abs/2103.15108
-
Code: None
Cloud2Curve: Generation and Vectorization of Parametric Sketches
-
Paper: https://arxiv.org/abs/2103.15536
-
Code: None
TrafficQA: A Question Answering Benchmark and an Efficient Network for Video Reasoning over Traffic Events
-
Paper: https://arxiv.org/abs/2103.15538
-
Code: https://github.com/SUTDCV/SUTD-TrafficQA
Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and Execution
-
Homepage: http://wellyzhang.github.io/project/prae.html
-
Paper: https://arxiv.org/abs/2103.14230
-
Code: None
ACRE: Abstract Causal REasoning Beyond Covariation
-
Homepage: http://wellyzhang.github.io/project/acre.html
-
Paper: https://arxiv.org/abs/2103.14232
-
Code: None
Confluent Vessel Trees with Accurate Bifurcations
-
Paper: https://arxiv.org/abs/2103.14268
-
Code: None
Few-Shot Human Motion Transfer by Personalized Geometry and Texture Modeling
-
Paper: https://arxiv.org/abs/2103.14338
-
Code: https://github.com/HuangZhiChao95/FewShotMotionTransfer
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks
-
Homepage: https://paschalidoud.github.io/neural_parts
-
Paper: None
-
Code: https://github.com/paschalidoud/neural_parts
Knowledge Evolution in Neural Networks
-
Paper(Oral): https://arxiv.org/abs/2103.05152
-
Code: https://github.com/ahmdtaha/knowledge_evolution
Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
-
Paper: https://arxiv.org/abs/2103.02148
-
Code: https://github.com/guopengf/FLMRCM
SGP: Self-supervised Geometric Perception
-
Oral
-
Paper: https://arxiv.org/abs/2103.03114
-
Code: https://github.com/theNded/SGP
Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
-
Paper: https://arxiv.org/abs/2103.02148
-
Code: https://github.com/guopengf/FLMRCM
Diffusion Probabilistic Models for 3D Point Cloud Generation
-
Paper: https://arxiv.org/abs/2103.01458
-
Code: https://github.com/luost26/diffusion-point-cloud
Scan2Cap: Context-aware Dense Captioning in RGB-D Scans
-
Paper: https://arxiv.org/abs/2012.02206
-
Code: https://github.com/daveredrum/Scan2Cap
-
Dataset: https://github.com/daveredrum/ScanRefer
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
rk and an Efficient Network for Video Reasoning over Traffic Events**
-
Paper: https://arxiv.org/abs/2103.15538
-
Code: https://github.com/SUTDCV/SUTD-TrafficQA
Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and Execution
-
Homepage: http://wellyzhang.github.io/project/prae.html
-
Paper: https://arxiv.org/abs/2103.14230
-
Code: None
ACRE: Abstract Causal REasoning Beyond Covariation
-
Homepage: http://wellyzhang.github.io/project/acre.html
-
Paper: https://arxiv.org/abs/2103.14232
-
Code: None
Confluent Vessel Trees with Accurate Bifurcations
-
Paper: https://arxiv.org/abs/2103.14268
-
Code: None
Few-Shot Human Motion Transfer by Personalized Geometry and Texture Modeling
-
Paper: https://arxiv.org/abs/2103.14338
-
Code: https://github.com/HuangZhiChao95/FewShotMotionTransfer
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks
-
Homepage: https://paschalidoud.github.io/neural_parts
-
Paper: None
-
Code: https://github.com/paschalidoud/neural_parts
Knowledge Evolution in Neural Networks
-
Paper(Oral): https://arxiv.org/abs/2103.05152
-
Code: https://github.com/ahmdtaha/knowledge_evolution
Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
-
Paper: https://arxiv.org/abs/2103.02148
-
Code: https://github.com/guopengf/FLMRCM
SGP: Self-supervised Geometric Perception
-
Oral
-
Paper: https://arxiv.org/abs/2103.03114
-
Code: https://github.com/theNded/SGP
Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
-
Paper: https://arxiv.org/abs/2103.02148
-
Code: https://github.com/guopengf/FLMRCM
Diffusion Probabilistic Models for 3D Point Cloud Generation
-
Paper: https://arxiv.org/abs/2103.01458
-
Code: https://github.com/luost26/diffusion-point-cloud
Scan2Cap: Context-aware Dense Captioning in RGB-D Scans
-
Paper: https://arxiv.org/abs/2012.02206
-
Code: https://github.com/daveredrum/Scan2Cap
-
Dataset: https://github.com/daveredrum/ScanRefer
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-6v91yRNO-1713291683547)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!