文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
实现原理如下:
(1)把程序中对DStream的操作转换成DStream Graph(依赖关系图)
(2)对于每个时间片,DStream Graph都会产生一个RDD Graph
(3)针对每个Output(print,forEachRdd),创建一个Spark Action/Transform进行输出。
(4)输出过程是,Spark Job交给JobManager,JobManager中维护着一个Job Queue,把Job交给Spark scheduler,scheduler负责调度。
三、Spark Streaming系统架构
3.1 系统组件:
– Master:记录DStream之间的依赖关系或者血缘关系,并负责任务调度以生成新的RDD
– Worker:从网络接收数据,存储并执行RDD计算
– Client:负责向Spark Streaming中灌入数据
3.2 作业提交流程:
• Network Input Tracker:跟踪每一个网络received数据,并且将其映射到相应的input DStream上
• Job Scheduler:周期性的访问DStream Graph并生成Spark Job,将其交给Job Manager执行
• Job Manager:获取任务队列,并执行Spark任务
3.3 窗口操作:
• Spark提供了一组窗口操作,通过滑动窗口技术对大规模数据的增量更新进行统计分析
• Window Operation:定时进行一定时间段内的数据处理
• 任何基于窗口的操作需要指定两个参数:
1) 窗口总长度(window length)
2) 滑动时间间隔(slide interval)
val windowedWordCounts=pairs.reduceByKeyAndWindow(_+_,Seconds(30),Seconds(10))
四、Spark容错性分析
4.1 Worker容错:
同Spark:worker挂了将会导致partition失效,如果task依赖的上层partition数据已经失效了,则会先将其依赖的partition计算任务再重算一遍。
4.2 Driver容错:
1.Driver的出错情况
(1)当数据源(InputStream)是HDFS时,driver数据恢复机制不重要
(2)当数据源是kafka、Flume时,由于数据被worker executor接收至内存中,若driver挂了,executor内存中的数据就不可用了,此时需要容错机制——主要依赖预写日志(WAL)和持久化日志。
2.容错原理
step1.
(1)Executor中的Receiver接收到-数据后,存入内存,并写入HDFS上的log里
最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!