R语言及参考答案(4)(1)

这篇博客通过R语言进行了异常点处理、回归分析以及模型建立。涉及内容包括:删除异常点后的回归预测,建立系数R2>0.68的显著性回归模型,以及多个实际场景的应用,如电器销售量预测、灌溉面积估计、投资行为分析和牙膏市场策略研究。博主通过实例展示了如何分析数据并建立有效的统计模型。
摘要由CSDN通过智能技术生成

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

初步诊断,有异常点

删除异常点,再进行回归分析

在这里插入图片描述

(3) 已知某城市中本厂电器的售价X2=160元,竞争对手售价X1=170元, 使

用上述建立起来的回归模型预测该城市的年销售量;

在这里插入图片描述

预测出年销售量为93.71825

4)您能否建立系数R2>0.68的回归模型,使得模型的F检验在0.10水平上是显著的 (考虑二次项和交叉项, 用逐步回归法)。

加上二次项和交叉项

在这里插入图片描述

逐步回归

在这里插入图片描述

发现去除x1^2比较好

在这里插入图片描述

表2 10个城市某种电器的年销售量和竞争对手价格(单位:元)

  1. 为了估计山上积雪融化后对下游灌溉的影响,在山上建立一个观测站,测量最大积雪深
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值