既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
-
使用过 Redis 做异步队列么,你是怎么用的?有什么缺点?
-
什么是缓存穿透?如何避免?什么是缓存雪崩?何如避免?
Linux面试专题及答案
============
-
Linux 软中断和工作队列的作用是什么?
-
Linux 通过什么方式实现系统调用?
-
如何唯一标识一个设备?
-
字符设备驱动程序的关键数据结构是哪个?
-
Linux 中有哪几种设备?
-
模块程序能否使用可链接的库函数?
-
Linux 中的浮点运算由应用程序实现还是内核实现?
-
模块和应用程序分别运行在什么空间?
-
Linux 调度程序是根据进程的动态优先级还是静态优先级来调度进程的?
-
调用 schedule()进行进程切换的方式有几种?
-
Linux 中的文件包括哪些?
-
Linux 中主要有哪几种内核锁?
-
Linux 中的用户模式和内核模式是什么含义?
-
TLB 中缓存的是什么内容?
-
设备驱动程序包括哪些功能函数?
Kafka面试专题及答案
============
-
kafaka 生产数据时数据的分组策略
-
Kafka 的设计是什么样的呢?
-
数据传输的事物定义有哪三种?
-
Kafka 判断一个节点是否还活着有那两个条件?
-
producer 是否直接将数据发送到 broker 的 leader(主节点)?
-
Kafa consumer 是否可以消费指定分区消息?
-
Kafka 消息是采用 Pull 模式,还是 Push 模式?
-
Kafka 存储在硬盘上的消息格式是什么?
-
Kafka 高效文件存储设计特点
-
Kafka 与传统消息系统之间有三个关键区别
-
Kafka 创建 Topic 时如何将分区放置到不同的 Broker 中
-
Kafka 新建的分区会在哪个目录下创建
-
partition 的数据如何保存到硬盘
-
kafka 的 ack 机制
-
Kafka 的消费者如何消费数据
-
消费者负载均衡策略
-
数据有序
大数据面试题大全
========
1、kafka 的 message 包括哪些信息
2、怎么查看 kafka 的 offset
3、hadoop 的 shuffle 过程
4、spark 集群运算的模式
5、HDFS 读写数据的过程
6、RDD 中 reduceBykey 与 groupByKey 哪个性能好,为什么
7、spark2.0 的了解
8、 rdd 怎么分区宽依赖和窄依赖
9、spark streaming 读取 kafka 数据的两种方式
10、kafka 的数据存在内存还是磁盘
11、怎么解决 kafka 的数据丢失
12、fsimage 和 edit 的区别?
13、列举几个配置文件优化?
14、datanode 首次加入 cluster 的时候,如果 log 报告不兼容文件版本,那需要namenode 执行格式化操作,这样处理的原因是?
15、MapReduce 中排序发生在哪几个阶段?这些排序是否可以避免?为什么?
16、hadoop 的优化?
17、设计题
18、有 10 个文件,每个文件 1G,每个文件的每一行存放的都是用户的 query,每个文件的 query 都可能重复。要求你按照 query 的频度排序。 还是典型的 TOP K 算法?
19、在 2.5 亿个整数中找出不重复的整数,注,内存不足以容纳这 2.5 亿个整数。
20、腾讯面试题:给 40 亿个不重复的 unsigned int 的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那 40 亿个数当中?
21、怎么在海量数据中找出重复次数最多的一个?
22、上千万或上亿数据(有重复),统计其中出现次数最多的钱 N 个数据。
23、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前 10 个词,给出思想,给出时间复杂度分析。
24、100w 个数中找出最大的 100 个数。
25、有一千万条短信,有重复,以文本文件的形式保存,一行一条,有重复。 请用 5 分钟时间,找出重复出现最多的前 10 条。
Hadoop面试题及答案
============
1.您对“大数据”一词有何了解?
2.大数据的五个V是什么?
3.告诉我们大数据和Hadoop如何相互关联。
4.大数据分析如何有助于增加业务收入?
5.解释部署大数据解决方案时应遵循的步骤。
6.定义HDFS和YARN的相应组件
7.为什么Hadoop可用于大数据分析?
8.什么是fsck?
9. NAS(网络附加存储)和HDFS之间的主要区别是什么?
10.格式化NameNode的命令是什么?
11.您有大数据经验吗?如果有,请分享一下。
12.您更喜欢好的数据还是好的模型?为什么?
13.您是否会优化算法或代码以使其运行更快?
14.您如何处理数据准备?
15.您如何将非结构化数据转换为结构化数据?
16.哪种硬件配置对Hadoop作业最有利?
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-8mvbo4te-1714870785226)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!