【Kafka从成神到升仙系列 五】面试官问我 Kafka 生产者的网络架构,我直接开始从源码背起(3)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

当我们 **首次获取元数据 **或者 当前的 batch 满了 或者 一个新的 batch 创建了,我们都可以去唤醒我们的 Sender,让这个线程执行我们的业务。

  • 首次获取元数据:让 Sender 去更新元数据信息
  • 当前的 batch 满了 或者 一个新的 batch 创建:让 Senderbatch 发送至 Broker

那这个 sender.wakeup 到底执行了什么呢,我们一起来看看其执行流程与执行代码

// 类 = KafkaProducer
sender.wakeup();

// 类 = Sender
public void wakeup() {
    this.client.wakeup();
}

// 类 = NetworkClient
public void wakeup() {
    this.selector.wakeup();
}

// 类 = Selector
public void wakeup() {
    this.nioSelector.wakeup();
}

// 类 = WindowsSelectorImpl
public Selector wakeup() {
    // Java NIO 包里面的操作
}

这里可以看到,整体的调用流程和我们上面的 网络架构 是一样的,也侧面验证了我们上面的 网络架构 是正确的。

不难看出,sender.wakeup() 实际上是唤醒了 Java NIO 里面的 Selector,让其能够接受所有的 keys,从而完成通信的链接与发送。

2. Sender

Sender 线程的东西稍微有点多,但核心只有两个:

  • 更新元数据消息
  • 将消息发送至 Broker

Sender 线程启动时,会启动如下代码:

public void run() {
    while (running) {
        run(time.milliseconds());
    }
}

void run(long now) {
    // 业务代码
}

从代码中不难看出,当我们启动 Sender 线程之后,Sender 线程会不断的轮询调用 run(long now) 该方法,执行其业务。

run(long now) 方法到底做了些什么呢,我们一起来看一下

2.1 accumulator.ready
  • 遍历所有的 TopicPartition,获取每一个 TopicPartitionLeader 节点
  • 弹出每一个 TopicPartition 的第一个 batch,校验该 batch 有没有符合发送的规定
  • 如果该 batch 符合了发送的规定后,将节点放至 readyNodes 中,标识该节点已经可以发送数据了
public ReadyCheckResult ready(Cluster cluster, long nowMs) {
    // 准备好的节点
    Set<Node> readyNodes = new HashSet<>();
    // 遍历所有的 TopicPartition
    for (Map.Entry<TopicPartition, Deque<RecordBatch>> entry : this.batches.entrySet()) {
        TopicPartition part = entry.getKey();
        Deque<RecordBatch> deque = entry.getValue();
		  // 获取当前Partition的leader节点
        Node leader = cluster.leaderFor(part);
        if (leader == null) {
            unknownLeadersExist = true;
        } else if (!readyNodes.contains(leader) && !muted.contains(part)) {
            synchronized (deque) {
                // 弹出每一个 TopicPartition 的第一个batch
                RecordBatch batch = deque.peekFirst();

                if (batch != null) {
                    // bactch 满足 batch.size() 或者 时间达到 linger.ms、
                    boolean full = deque.size() > 1 || batch.records.isFull();
                    boolean expired = waitedTimeMs >= timeToWaitMs;
                    boolean sendable = full || expired || exhausted || closed || flushInProgress();
                    if (sendable && !backingOff) {
                        // 将当前的节点添加至准备好的队列中
                        readyNodes.add(leader);
                    } else { 
                        nextReadyCheckDelayMs = Math.min(timeLeftMs, nextReadyCheckDelayMs);
                    }
                }
            }
        }
    }
    // 最终返回该节点(这里最重要的还是 Set<String> 也就是准备好的节点集合)
    return new ReadyCheckResult(readyNodes, nextReadyCheckDelayMs, unknownLeadersExist);
}

public ReadyCheckResult(Set<Node> readyNodes, long nextReadyCheckDelayMs, boolean unknownLeadersExist) {
    this.readyNodes = readyNodes;
    this.nextReadyCheckDelayMs = nextReadyCheckDelayMs;
    this.unknownLeadersExist = unknownLeadersExist;
}

2.2 metadata.requestUpdate
  • 如果发现有 TopicPartition 没有 leader,那么这里就调用 requestUpdate() 方法更新 metadata
// 如果这个地方是 True,说明我们上面有的 TopicPartition 的 leader 节点为 null
if (result.unknownLeadersExist){
    // 更新元数据
    this.metadata.requestUpdate();
}

// 设置标记位为true,后续进行更新
public synchronized int requestUpdate() {
    this.needUpdate = true;
    return this.version;
}

2.3 remove any nodes
  • 遍历所有准备好的节点,利用 NetworkClient 来判断改节点是不是已经准备完毕
  • 如果该节点未准备完毕,则从 readyNodes 中剔除
  • 节点未准备完毕,会初始化链接该节点,便于下一次的消息发送

PS:这里可能会有同学对上面已经准备好了,下面为什么还有准备好的逻辑筛选有疑问

  • 第一步筛选的是 TopicPartition 对应的 batch 已经满足了发送的必要
  • 第二步筛选的是 TopicPartition 对应的 Broker 是否建立了链接,如果不是则初始化链接
// 遍历所有准备好的节点
Iterator<Node> iter = result.readyNodes.iterator();
long notReadyTimeout = Long.MAX\_VALUE;
while (iter.hasNext()) {
    Node node = iter.next();
    // 利用 NetworkClient 来判断改节点是不是已经准备完毕
    // 如果还未准备好,从准备好的队列中剔除掉
    if (!this.client.ready(node, now)) {
        iter.remove();
        notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
    }
}

// 判断节是否准备好发送
// 如果没有准备好发送,则会与该节点初始化链接,便于下一次的消息发送
public boolean ready(Node node, long now) {
    // 已经准备好
    if (isReady(node, now)){
        return true;
    }
    // 与该节点的初始化
    if (connectionStates.canConnect(node.idString(), now)){
        initiateConnect(node, now);
    }
    return false;
}

2.4 accumulator.drain
  • 遍历所有准备好的 readyNodes,得到该 Broker 上所有的 PartitionInfo 信息,判断该 Partition 是否被处理中,如果没有在处理中则获取其对应的 Deque<RecordBatch>
  • 弹出队列中的 First,判断其是否在 backoff (没有重试过,或者重试了但是间隔已经达到了retryBackoffMs)加上该 batch 的大小 < maxRequestSize,该 batch 符合规定
  • 将该 batch放进 readyRecordBatchList中,最终放进 Map<node.id(), readyRecordBatchList> ,这样我们一个 Broker 可以发送的 batch 就已经整理完毕。
  • 最终我们得到 Map<Integer, List<RecordBatch>>key 代表当前已经连接好的 Brokervalue 代表当前需要发送的 batch
// 生成节点对应的batch消息
Map<Integer, List<RecordBatch>> batches = this.accumulator.drain(cluster,result.readyNodes,this.maxRequestSize, now);

public Map<Integer, List<RecordBatch>> drain(Cluster cluster, Set<Node> nodes,int maxSize,long now) {
    Map<Integer, List<RecordBatch>> batches = new HashMap<>();
    // 遍历所有准备好的node节点
    for (Node node : nodes) {
        int size = 0;
        // 通过node节点获取其所有的Partition
        List<PartitionInfo> parts = cluster.partitionsForNode(node.id());
        // 存储该节点需要发送的Batch
        List<RecordBatch> ready = new ArrayList<>();
        int start = drainIndex = drainIndex % parts.size();
        do {
            // 取Partition
            PartitionInfo part = parts.get(drainIndex);
            TopicPartition tp = new TopicPartition(part.topic(), part.partition());
            // 当分区没有正在进行的批处理时
            if (!muted.contains(tp)) {
                // 获取该分区的所有的RecordBatch
                Deque<RecordBatch> deque = getDeque(new TopicPartition(part.topic(), part.partition()));
                if (deque != null) {
                    synchronized (deque) {
                        // 查看队列第一个
                        RecordBatch first = deque.peekFirst();
                        if (first != null) {
                            // 判断其重试与时间
                            boolean backoff = first.attempts > 0 && first.lastAttemptMs + retryBackoffMs > now;
                            if (!backoff) {
                                // 判断是否超越最大发送限制
                                if (size + first.records.sizeInBytes() > maxSize && !ready.isEmpty()) {
                                    break;
                                } else {
                                    // 取出队列第一个
                                    RecordBatch batch = deque.pollFirst();
                                    batch.records.close();
                                    // 当前发送的大小累积
                                    size += batch.records.sizeInBytes();
                                    // 放入准备好的列表中
                                    ready.add(batch);
                                    batch.drainedMs = now;
                                }
                            }
                        }
                    }
                }
            }
            this.drainIndex = (this.drainIndex + 1) % parts.size();
        } while (start != drainIndex);
        // 将节点与准备好的batch列表对应
        batches.put(node.id(), ready);
    }
    // 最终返回:所有准备好的节点与对应的batch列表
    return batches;
}

2.5 createProduceRequests
  • 遍历刚刚我们得到的 Map<node.id(), readyRecordBatchList,组装成客户端请求
List<ClientRequest> requests = createProduceRequests(batches, now);

// 组装客户端请求
private List<ClientRequest> createProduceRequests(Map<Integer, List<RecordBatch>> collated, long now) {
    List<ClientRequest> requests = new ArrayList<ClientRequest>(collated.size());
    for (Map.Entry<Integer, List<RecordBatch>> entry : collated.entrySet())
        requests.add(produceRequest(now, entry.getKey(), acks, requestTimeout, entry.getValue()));
    return requests;
}

2.6 client.send
  • 遍历每一个客户端请求并进行发送

PS:这里的发送是通过 KafkaClient 提供的接口,具体由 NetworkClient 实现,我们后面会讲

for (ClientRequest request : requests){
    client.send(request, now);
}

2.7 client.poll
  • 发送消息

PS:这里也同样是通过 KafkaClient 提供的接口,具体由 NetworkClient 实现,我们后面会讲

this.client.poll(pollTimeout, now);

3. NetworkClient

我们的 SenderProducer 发送的消息进行 校验、筛选、组装,让我们的 NetworkClient 进一步的将消息发送

3.1 send
  • 拿到当前客户端请求的 node,校验其是否有权限
  • 如果有权限的话,我们设置下时间并添加到到 inFlightRequests,调用 selector 进行发送(这里提前剧透一下,send 方法虽然叫发送,实际上并没有发送,只是注册了写事件,后面会讲到)

inFlightRequests 的作用:

  • 缓存已经发出去但还没有收到响应的请求,保存对象的具体形式为 Map<NodeId,Deque<Request>>
  • 配置参数 max.in.flight.requests.per.connection,默认值为5,即每个连接最多只能缓存5个未收到响应的请求,超过这个数值之后便不能再往这个连接发送更多的请求了
public void send(ClientRequest request, long now) {
    // 拿到当前客户端请求的node
    String nodeId = request.request().destination();
    // 是否可以发送请求(我们前面已经校验过,一般情况下都能够发送)
    if (!canSendRequest(nodeId))
        throw new IllegalStateException("Attempt to send a request to node " + nodeId + " which is not ready.");
    doSend(request, now);
}

private void doSend(ClientRequest request, long now) {
    // 设置时间
    request.setSendTimeMs(now);
    // 将当前请求添加到 inFlightRequests
    this.inFlightRequests.add(request);
    selector.send(request.request());
}

3.2 poll
  • 判断当前需要更新元数据,如果需要则更新元数据
  • 调用 selectorpoll 方法进行 Socket IO 的操作(这里也在后面会讲到)
  • 处理完成之后的操作
    • 处理已经完成的 send
    • 处理从 server 端接收到 Receive
    • 处理连接失败那些连接
    • 处理新建立的那些连接
    • 处理超时的连接
  • 如果回调的话,处理回调的信息
public List<ClientResponse> poll(long timeout, long now) {
    // 判断当前需要更新元数据,如果需要则更新元数据
    long metadataTimeout = metadataUpdater.maybeUpdate(now);
    
    // 调用 selector 的 poll 方法进行 Socket IO 的操作
    this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
    

    // 处理完成之后的操作
    long updatedNow = this.time.milliseconds();
    List<ClientResponse> responses = new ArrayList<>();
    // 处理已经完成的 send(不需要 response 的 request,如 send)
   	 handleCompletedSends(responses, updatedNow);
    // 处理从 server 端接收到 Receive(如 Metadata 请求)
    handleCompletedReceives(responses, updatedNow);
    // 处理连接失败那些连接,重新请求 meta
    handleDisconnections(responses, updatedNow);
    // 处理新建立的那些连接(还不能发送请求,比如:还未认证)
    handleConnections();
    // 处理超时的连接
    handleTimedOutRequests(responses, updatedNow);

    // 处理回调的信息
    for (ClientResponse response : responses) {
        if (response.request().hasCallback()) {
            try {
                response.request().callback().onComplete(response);
            } catch (Exception e) {
                log.error("Uncaught error in request completion:", e);
            }
        }
    }
	
    // 返回响应结果
    return responses;
}

4. Selector

终于来到了我们的最后一步,Kafka 自己封装的 Selector,这个哥们就是真正发送消息的地方

激动的心,颤抖的手,跟着我一起看看 Selector 到底是怎么发送消息的

4.1send
  • 根据当前节点的编号拿到当前客户端的 channel
  • 向当前的 KafkaChannel 注册写事件

写事件触发的时间:当 Scoket缓冲区 有空闲时,触发该事件

从这里可以看出来,我们的 send 方法其实也没有真正的发送消息,只是向 KafkaChannel 注册了 写事件,保障后面 poll 轮旋事件发送的正确性。

public void send(Send send) {
    // 根据当前节点的编号拿到当前客户端的channel
    KafkaChannel channel = channelOrFail(send.destination());
    try {
        // 向当前的 KafkaChannel 注册写事件
        channel.setSend(send);
    } catch (CancelledKeyException e) {
        this.failedSends.add(send.destination());
        close(channel);
    }
}

public void setSend(Send send) {
    this.send = send;
    this.transportLayer.addInterestOps(SelectionKey.OP\_WRITE);
}

4.2 poll
  • 清除相关记录
  • 获取就绪事件
  • 处理 io 操作
  • 将处理得到的 stagedReceives 添加到 completedReceives 中(NetworkClient处理响应)
  • 关闭老的连接

由于这个方法比较重要,所以我们一个一个的讲,跟着我们的思路来

public void poll(long timeout) throws IOException {
    
    // 清除相关缓存记录
    clear();
    
   // 获取就绪事件
    long startSelect = time.nanoseconds();
    int readyKeys = select(timeout);
    long endSelect = time.nanoseconds();
    currentTimeNanos = endSelect;
    this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());
	
    // 处理 io 操作
    if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) {
        pollSelectionKeys(this.nioSelector.selectedKeys(), false);
        pollSelectionKeys(immediatelyConnectedKeys, true);
    }
	
    // 将处理得到的 stagedReceives 添加到 completedReceives 中
    addToCompletedReceives();

    long endIo = time.nanoseconds();
    this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
    
    // 关闭老的连接
    maybeCloseOldestConnection();
}

4.2.1 clear

clear() 方法是在每次 poll() 执行的第一步,它作用的就是清理上一次 poll 过程产生的部分缓存。

这里的缓存是不是感觉有点熟悉,他就是我们之前在 NetworkClient 的 **处理完成之后的操作 **对应的缓存,忘了的小伙伴可以回去看一下

private void clear() {
    this.completedSends.clear();
    this.completedReceives.clear();
    this.connected.clear();
    this.disconnected.clear();
    this.disconnected.addAll(this.failedSends);
    this.failedSends.clear();
}

4.2.2 select

select(ms) 方法主要通过调用 nioSelectorselect 方法,返回我们就绪事件的数量

这里的 nioSelector 是属于 java.nio.channels.Selector 的,也就是我们 Java NIO 包里面的

  • nioSelector.selectNow非阻塞的,当前操作没有通道准备好立即返回,返回是0
  • nioSelector.select阻塞的,当前没有通道准备好会阻塞住,最长时间为 long ms
private int select(long ms) throws IOException {
    if (ms == 0L) {
        return this.nioSelector.selectNow();
    } else {
        return this.nioSelector.select(ms);
    }
}

4.2.3 pollSelectionKeys
pollSelectionKeys(this.nioSelector.selectedKeys(), false);
pollSelectionKeys(immediatelyConnectedKeys, true);

这部分是 socket IO 的主要部分,发送 Send 及接收 Receive 都是在这里完成的,在 poll() 方法中,这个方法会调用两次:

  • 第一次调用的目的是:处理已经就绪的事件,进行相应的 IO 操作;
  • 第二次调用的目的是:处理新建立的那些连接,添加缓存及传输层(Kafka 又封装了一次,这里后续文章会讲述)的握手与认证。

我们来剖析下 pollSelectionKeys 整理的步骤:

private void pollSelectionKeys(Iterable<SelectionKey> selectionKeys, boolean isImmediatelyConnected) {
    // 拿到当前所有准备好的keys
    Iterator<SelectionKey> iterator = selectionKeys.iterator();
    while (iterator.hasNext()) {
        // 获取key并删除它,防止重复使用
        SelectionKey key = iterator.next();
        iterator.remove();
        
        // 根据 key 拿到对应的附件 KafkaChannel
        KafkaChannel channel = channel(key);
        sensors.maybeRegisterConnectionMetrics(channel.id());
        lruConnections.put(channel.id(), currentTimeNanos);

        try {
			   // 处理所有已经完成握手(Tcp)的连接(正常或立即)
            if (isImmediatelyConnected || key.isConnectable()) {
                if (channel.finishConnect()) {
                    this.connected.add(channel.id());
                    this.sensors.connectionCreated.record();
                } else
                    continue;
            }

            // 如果通道未准备好,请完成准备


![img](https://img-blog.csdnimg.cn/img_convert/f3fd5e56eb0879386f5937db42386d31.png)
![img](https://img-blog.csdnimg.cn/img_convert/f82955ce5e8d636e95a6e898c3fbbce5.png)
![img](https://img-blog.csdnimg.cn/img_convert/5bf3fac876e40d38ccf19163a3ead5d8.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

 if (channel.finishConnect()) {
                    this.connected.add(channel.id());
                    this.sensors.connectionCreated.record();
                } else
                    continue;
            }

            // 如果通道未准备好,请完成准备


[外链图片转存中...(img-PvTqBcA7-1715353384070)]
[外链图片转存中...(img-lTDXO3eV-1715353384070)]
[外链图片转存中...(img-Cbtxb9Qq-1715353384071)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值