最新【DS】9(2),面试字节跳动的大数据开发工程师该怎么准备

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

    countArr[array[i]-minVal]++;
}
//4.遍历计数数组,将值再次赋给原来的数组
int k=0;
for (int i = 0; i < countArr.length; i++) {
    while(countArr[i]>0){
        array[k++]=i+minVal;
        countArr[i]--;
    }
}

}


##### 算法效率分析



> 
> 时间复杂度:O(n+范围)【主要体现在最后一个循环上边】
> 
> 
> 空间复杂度:O(范围)
> 
> 
> 稳定性:不稳定
> 
> 
> 


##### 使用前提及应用场景



> 
> 使用前提:输入的数据必须是有确定范围的整数
> 
> 
> 应用场景:一般是集中分布一定范围内的整形数据的统计
> 
> 
> 


### 二、桶排序(BucketSort)


##### 示例分析(含详细步骤拆分图)


其实桶排序没有确切的定义,思想也不好描述,如果非要说核心思想,那就是“划分多个范围相同的区间,每个子区间自排序,最后合并”。


但是只放这一句话可能不好理解,下边我们举个例子。


![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y6DX3B4t-1666494072982)(F:\typora插图\image-20221023092807300.png)]](https://img-blog.csdnimg.cn/93a9b6aa455249e599d4e4c63a78bc3f.png)


##### 算法效率分析



> 
> 时间复杂度:O(n+C)
> 
> 
> 空间复杂度:O(n(临时数组)+桶的个数)【常数个】
> 
> 
> 稳定性:不确定,取决于桶内部排序使用的算法
> 
> 
> 


### 三、基数排序(RadixSort)


##### 示例分析(含详细步骤拆分图及动图演示)


基本原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。


还是和上边一样,我们来举个例子。


![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NuASv07F-1666494072983)(F:\typora插图\image-20221023095745476.png)]](https://img-blog.csdnimg.cn/a5fb7b90cae343a3b81b18e33279c085.png)


![在这里插入图片描述](https://img-blog.csdnimg.cn/1e0ec64b919943feaa4e756f3a559027.gif#pic_center)



> 
> ①个位数是什么放到对应的桶②按顺序拿出来,再次按照十位数拿③按顺序拿出来,按照百位放④如果最大值只有3位数,就结束了
> 
> 
> 个十百位的优先级的应用
> 
> 
> 


##### 补充:元素是负数时的处理思路


有负数时处理思路:先判断有无负数 有则找到最小值 数组所有数据都减去该值 也就是数组最小值会变为0 接下来按正整数排序 最后数组所有数据加上原最小数 变为原有数据值】


### 四、三种非比较类排序算法的异同及内部联系


1. 桶排序和计数排序都需要找最大最小值,基数排序只需要找最大值
2. 计数排序的数学原理是鸽巢原理,因此也叫作鸽巢排序。
3. 基数排序是桶排序的扩展,也就是说基数排序也是桶排序。
4. 基数排序使用的是序列的元素的位数,桶排序和计数排序使用的是序列元素的范围。
5. 三者一般用于整数的排序。


### 五、再次总结


#### 算法优劣对比【优化后】




| 排序算法 | 最坏时间复杂度 | 最好时间复杂度 | 平均时间复杂度 | 空间复杂度 |
| --- | --- | --- | --- | --- |
| 冒泡排序 | O(n^2) | O(n) | O(n^2) | O(1) |
| 选择排序 | O(n^2) | O(n^2) | O(n^2) | O(1) |
| 插入排序 | O(n^2) | O(n^2) | O(n^2) | O(1) |
| 快速排序 | O(n \* logn) | O(n \* logn) | O(n \* logn) | O(logn) |
| 堆排序 | O(n \* log(n)) | O(n \* log(n)) | O(n \* log(n)) | O(1) |
| 希尔排序 | ----- | ----- | O(n^1.3) | O(1) |
| 归并排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(n) |
| 计数排序 | O(n+范围) | ----- | ----- | O(范围) |
| 基数排序 | ----- | ----- | O(n) | O(n+范围) |
| 桶排序 | ----- | ----- | O(n) | O(n+范围) |


![在这里插入图片描述](https://img-blog.csdnimg.cn/352dd5f4142d4d66867b775c72d36b63.png#pic_center)


### 参考


![img](https://img-blog.csdnimg.cn/img_convert/3e7b04bceac38b39751550e984e6a858.png)
![img](https://img-blog.csdnimg.cn/img_convert/96f86272803c7db6c3d606ccd0c4ea6e.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值