高级大数据实验(2),2024年最新大厂大数据开发面试笔试题目

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

}
    }
    }






[​编辑文章]( )




### 第二次实验



要去掉Spark中的日志输出,有几种不同的方法可以实现:
import org.apache.log4j.{Level, Logger}

val rootLogger = Logger.getRootLogger()
rootLogger.setLevel(Level.ERROR)


请根据给定的实验数据,在spark-shell中通过编程来计算以下内容:


#### **学生填写代码以及给出最终结果**


(1) 该系总共有多少学生;


答案为: 人


(2) 该系共开设来多少门课程;


答案为 门


(3) Tom同学的总成绩平均分是多少;


Tom同学的平均分为 分


(4) 求每名同学的选修的课程门数;


答案共 265行


(5) 该系DataBase课程共有多少人选修;


答案为 人



val rdd= sc.textFile(“file:///home/spark/score.txt”)

1.
val count = rdd.map(line=>line.split(“,”)(0)).distinct().count
2.
val countCourse = rdd.map(line=>line.split(“,”)(1)).distinct().count
3.
val sum = rdd.filter(line=>line.split(“,”)(0)“Tom”)

val avg = sum.map(name=>(name.split(“,”)(0),name.split(“,”)(2).toInt)).mapValues(x=>(x,1)).reduceByKey((x,y)=>(x._1+y._1,x._2+y._2)).mapValues(x=>(x._1/x._2)).collect()
4.
val countC = rdd.map(row=>(row.split(“,”)(0),row.split(“,”)(1))).mapValues(x=>(x,1)).reduceByKey((x,y)=>(" “,x._2+y._2)).mapValues(x =>x._2).foreach(println)
5
val countPeople = rdd.filter(line=>line.split(”,")(1)
“DataBase”).count


#### **实验说明**:


现有一份某电商2020年12月份的订单数据文件onlin\_retail.csv,记录了每位顾客每笔订单的购物情况,包含三个数据字段,字段说明如下表所示。现需要统计每位客户的总消费金额,并筛选出消费金额在前50名的客户。



![img](https://img-blog.csdnimg.cn/img_convert/4763c8b7461354147ac5b032dbc6ed4f.png)



**实现思路及步骤:**


(1) 读取数据并创建RDD


(2) 通过map()方法分割数据,选择客户编号和订单价格字段组成键值对数据


(3) 使用reduceByKey()方法计算每位客户的总消费金额


(4) 使用sortBy()方法对每位客户的总消费金额进行降序排序,取出前50条数据



val rdd= sc.textFile(“file:///home/spark/online_retail.txt”)

val bianhao = rdd.mapPartitionsWithIndex((index, iter) => {
if (index == 0) {
  iter.drop(1) // 跳过第一行
} else {
  iter
}
}).map(line => {
val fields = line.split(“,”).map(.trim)
if (fields.length > 1 && fields(0).nonEmpty) {
  Some((fields(0), fields(1).toDouble))
} else {
  None
}
}).filter(
.isDefined).map(.get)
bianhao.collect().foreach(println)
bianhao.take(10).foreach(println)

val totalSpentPerCustomer = bianhao.map{ case (customerId, price) => (customerId, price) }.reduceByKey(
+ )
totalSpentPerCustomer.collect().foreach(println)
totalSpentPerCustomer.take(10).foreach(println)


val jiangxu = totalSpentPerCustomer.sortBy(
._2, ascending = false)
jiangxu.take(50).foreach(println)


#### **实验说明:**


现有一份各城市的温度数据文件avgTemperature.txt,数据如下表所示,记录了某段时间范围内各城市每天的温度,文件中每一行数据分别表示城市名和温度,现要求用spark编程计算出各城市的平均气温。




![img](https://img-blog.csdnimg.cn/img_convert/babc5d5829aa638facf21861a31954b9.png)


**实现思路及步骤:**


(1) 通过textFile()方法读取数据创建RDD


(2) 使用map()方法将数据输入数据按制表符进行分割,并转化成(城市,温度)的形式


(3) 使用groupBy()方法按城市分组,得到每个城市对应的所欲温度。


(4) 使用mapValues()和reduce()方法计算各城市的平均气温



val rdd= sc.textFile(“file:///home/spark/avgTemperature.txt”)

val cityTemperatures = rdd.map(line => {
val Array(city, temperature) = line.split(“\t”) // 使用制表符"\t"进行分割
(city, temperature.toDouble) // 生成键值对
})

val cityWiseTemperatures = cityTemperatures.groupBy(.1).mapValues(.map(.2))
cityWiseTemperatures.collect().foreach(println)

val cityAvgTemperatures = cityTemperatures.groupBy(
.1).mapValues(values => {
  val totalTemp = values.map(
._2).sum
  val count = values.size
  totalTemp / count
})

cityAvgTemperatures.collect().foreach(println)



### 学习通第二章作业


  
 “双减”政策落地后,为了体现“分数是一时之得,要从一生的长远目标来看”教育,需要通过大数据技术分析部分考试数据来提高学校老师的教学质量。某学校某班级经过期中考试后,该班级中每位同学的各科目考试成绩保存在一份文件primary\_midsemester.txt中,文件共有5个数据字段,分别为学生学号(ID)、性别(gender)、语文成绩(Chinese)英语成绩(English)、数学成绩(Math),部分数据如表2-8所示。  
 表 2-8 某学校某班级的学生各科目考试成绩部分数据  
 ID性别汉语英语数学301610男80号6478301611女65 87 58301612女性447177301613女66 7191301614女7071 100301615男72 77 72301616女73 81 75301617女69 77 75301618男73 61 65  
 为了分析各科目老师的教学质量,请使用scala(Scala)函数式编程分别统计各科目考试成绩的平均分、最低分和最高分。


  
 val source = sc.textFile("file:///home/hadoop/primary\_midsemester.txt")  
 val headerLine = source.first()  
 val remainingLines = source.filter(\_ != headerLine)   
 val thirdColumn = remainingLines.map(line => {  
   val columns = line.split("\\s+")  
   columns(2).toInt   
 })  
 val thirdColumn1 = remainingLines.map(line => {  
   val columns = line.split("\\s+")  
   columns(3).toInt   
 })  
 val thirdColumn2 = remainingLines.map(line => {  
   val columns = line.split("\\s+")  
   columns(4).toInt   
 })  
 val avg1: Double = thirdColumn.reduce(\_ + \_).toDouble / thirdColumn.count()  
 val avg2: Double = thirdColumn1.reduce(\_ + \_).toDouble / thirdColumn1.count()  
 val avg3: Double = thirdColumn2.reduce(\_ + \_).toDouble / thirdColumn2.count()  
 val columns = headerLine.split(" ") // 使用split方法按空格分隔  
 val name1 = columns(2)  
 val name2 = columns(3)  
 val name3 = columns(4)  
 val maxScore = thirdColumn.aggregate(Int.MinValue)(\_ max \_, \_ max \_)  
 val minScore = thirdColumn.aggregate(Int.MaxValue)(\_ min \_, \_ min \_)


val maxScore1 = thirdColumn1.aggregate(Int.MinValue)(\_ max \_, \_ max \_)  
 val minScore1 = thirdColumn1.aggregate(Int.MaxValue)(\_ min \_, \_ min \_)


val maxScore2 = thirdColumn2.aggregate(Int.MinValue)(\_ max \_, \_ max \_)  
 val minScore2 = thirdColumn2.aggregate(Int.MaxValue)(\_ min \_, \_ min \_)  
 println(s"${name1}的最高分是: $maxScore; 最低分是:$minScore;${name2}的最高分是: $maxScore1; 最低分是:$minScore1;${name3}的最高分是: $maxScore2; 最低分是:$minScore2")  
 print(s"${name1}的平均分是$avg1;${name2}的平均分是$avg2;${name3}的平均分是$avg3")






**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
![img](https://img-blog.csdnimg.cn/img_convert/5264ed16efd05065908970891eacfd17.png)

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**




**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
[外链图片转存中...(img-NYIE3O5O-1713211998501)]

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

大数据面试笔试资料-56家互联网大公司面试笔试题资料整理汇总: hive面试.doc 京东.jpg 笔试题1.docx 笔试题10.jpg 笔试题11.JPG 笔试题12_搜狐 笔试题13_九章云极科技有限公司 笔试题14_北京东方国信科技股份有限公司-联通事业部-笔试题 笔试题15_百分点 笔试题16_Admaster 笔试题2.docx 笔试题3.docx 笔试题4_boss直聘.docx 笔试题5_面试题4的实现思路.docx 笔试题6.jpg 面试总结 面试题1.doc 面试题2.doc 面试题3.doc 面试题7+面试题8+面试题9_北京广视通达数字网络科技有限公司 中企动力面试总结?-面试题1 畅捷通(用友集团)?-面试题2 麦达数字面试?-面试题3 boss直聘面试?-面试题5 博易智软(北京)技术股份有限公司?面试题7 公安部第一研究所?面试题7 IBM?面试题7 车网互联?面试题7 凯立德科技股份有限公司?面试题7 北京捷通华声语音技术有限公司?面试题7 北京法意科技有限公司?面试题7 大树科技(重点)?面试题7 北京XXX宇有限公司??面试题8 盛世全景?面试题8 华胜天成?面试题8 联龙博通?面试题8 大麦网?面试9 京东金融?面试10 滴滴打车 架构师?面试11 神州?面试11 百分点科技?面试11 锐安科技?面试12---有笔试 人人贷?国舜科技?面试13 宜信?面试16 明略数据?面试17 爱奇艺面试面试18---爱奇艺明确有背景调查,记在面试评测上面,由hr写背景调查评测----(直接卡死了) 奥维云网?面试26 喜马拉雅FM?中星电子?银橙传媒?面试27 电信云计算?面试题29 乐视?面试题29 优酷?面试题29 无双科技公司?面试题30 亿玛在线公司?面试题30 58同城?面试题30 talkingDate?面试题30 慕华信息科技有限公司?面试题30 美团网?面试题31 LeanCloud?面试题31 筑巢新游?面试题31 阿里巴巴?面试题32 博睿宏远?面试题33 融易通?面试题33 中国互联网络信息中心?面试题33? 优酷土豆?面试题33 乐视?面试题41 TalkingData?面试题41 网德天下?面试题41 东方国信?面试题41 畅捷通?面试题41 太极?面试题41 北京四中网校?面试题41 SenseTime?面试题41 易观智库?面试题41 银创科技?面试题41 京东?面试题41 壕鑫互连?面试题41 滴答拼车?面试题41
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值