2024年【深度学习】(四)目标检测(3),2024年最新三幅图给你弄懂EventBus核心原理

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

如何从图像中解析出可供计算机理解的信息,是机器视觉的中心问题。深度学习模型由于其强大的表示能力,加之数据量的积累和计算力的进步,成为机器视觉的热点研究方向。

计算机视觉的四大任务:目标分类目标检测语义分割实例分割。难度逐渐递增,对图像特征的提取也更加精细。

  • 分类(Classification):即是将图像结构化为某一类别的信息,用事先确定好的类别(string)或实例ID来描述图片。这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。
  • 检测(Detection):分类任务关心整体,给出的是整张图片的内容描述,而检测则关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因而,检测模型的输出是一个列表,列表的每一项使用一个数据组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。
  • 分割(Segmentation):分割包括语义分割(semantic segmentation)和实例分割(instance segmentation),前者是对前背景分离的拓展,要求分离开具有不同语义的图像部分,而后者是检测任务的拓展,要求描述出目标的轮廓(相比检测框更为精细)。分割是对图像的像素级描述,它赋予每个像素类别(实例)意义,适用于理解要求较高的场景,如无人驾驶中对道路和非道路的分割。
    在这里插入图片描述

二、目标检测的发展历程

目标检测发展的20年来,从传统的目标检测算法到基于深度学习的目标检测算法,目标检测的精度和速度不断提高,发展历程如下图所示:
在这里插入图片描述

  • 传统方法 ❤️ :区域选取+特征提取+特征分类。在多尺度图像上应用多尺度窗口进行滑窗,每个roi位置提取出固定长度的特征向量,然后采用SVM进行学习判别。这在小数据上比较奏效;传统方法的工作主要聚焦于设计更好的特征描述子,将roi信息映射为embedding feature。本文不做介绍。
    请添加图片描述
  • Two-stage Detectors(两阶段目标检测器) 🧡 :诸如R-CNN,Fast R-CNN,Faster R-CNN到最新的Mask Scoring R-CNN等网络结构,都属于Two-stage检测方法。目标检测-上篇中介绍。
    请添加图片描述
  • One-stage Detectors(单阶段目标检测器) 💛 :从最早的OverFeat到现在的YOLO,SSD,RetinaNet,YOLOv2,CornerNet等都属于one stage目标检测方法。目标检测-下篇中介绍。
    请添加图片描述

对比:双阶段精度高但速度慢,单精度速度快但精度稍逊。

三、区域卷积神经网络(R-CNN)系列

1.R-CNN

随着CNN网络的出现,目标检测进入了深度学习时代,目标检测技术越来越倾向于网络结构、损失函数和优化方法的设计,人们更加关注使用CNN网络自动提取出图像特征,代替了原来的手工设计特征。目标检测从“冷兵器”时代,过渡到“热兵器”时代,从两阶段目标检测算法到单阶段目标检测算法,再到现在的Anchor Free算法趋势,伴随着硬件计算水平的不断提高,目标检测技术的发展进入了“快车道”。首先介绍深度学习的开山之作—R-CNN算法。
论文链接: Rich feature hierarchies for accurate object detection and semantic segmentation
传统方法–>R-CNN
在这里插入图片描述
整体的思路非常简洁明了,不需要像传统算法使用滑动窗口的方式在整张图像上滑动来获取Region Proposal(候选框),而只选择一部分候选框,然后在这些窗口上进行CNN网络。

R-CNN算法流程如下:

  1. 输入一张图片。
  2. 使用selective search的方法选出来约2000个Region Proposal,这种方法得到的候选框数量比传统方法少的多。大致是采用图像分割的算法得到的图像块,分割得到候选框。
  3. 将每一个候选框图片块resize为227*227的大小,然后输入到一个AlexNet CNN网络中,每个候选框图片都能得到一个4096维的特征。
  4. 为每一类都构建一个SVM分类器,例如你要分十类,就会有10个SVM分类器。将上一步中CNN提取到的特征,输入到这些SVM分类器中,可以得到每一类的分数,从而得到分类结果。
  5. 同时将第三步中CNN输出的特征向量做回归,纠正Bounding Box框左上右下四个坐标的位置。
    在这里插入图片描述

代码实现可以参考下面两篇文章:

RCNN代码简单实现
RCNN算法(github代码复现理解)–学习记录2

优点

  • 相比于传统算法精度mAP大幅提升

在这里插入图片描述
缺点

  • 训练时间特别长(84小时)
  • 测试阶段很慢,VGG16一张图像47s
  • 复杂的多阶段训练

2.SPP-Net

SPP-Net是出自2015年发表在IEEE上的论文,在此之前,所有的神经网络都是需要输入固定尺寸的图片,比如224224(ImageNet)、3232(LenNet)、96*96等。这样对于我们希望检测各种大小的图片的时候,需要经过crop,或者warp等一系列操作,这都在一定程度上导致图片信息的丢失和变形,限制了识别精确度。而且,从生理学角度出发,人眼看到一个图片时,大脑会首先认为这是一个整体,而不会进行crop和warp,所以更有可能的是,我们的大脑通过搜集一些浅层的信息,在更深层才识别出这些任意形状的目标。
论文链接:《Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition》
在这里插入图片描述

与RCNN对比,两大改进

  • 直接输入整幅图像,所有区域共享卷积计算,在Conv5层输出基础上提取所有区域特征
  • 引入空间金字塔池化SPP(Spatial Pyramid Pooling)

在这里插入图片描述
SPP-Net算法流程如下:

  1. 首先通过选择性搜索,对待检测的图片进行搜索出2000个候选窗口。这一步和R-CNN一样。
  2. 特征提取阶段。这一步就是和R-CNN最大的区别了,这一步骤的具体操作如下:把整张待检测的图片,输入CNN中,进行一次性特征提取,得到feature maps,然后在feature maps中找到各个候选框的区域,再对各个候选框采用金字塔空间池化,提取出固定长度的特征向量。而R-CNN输入的是每个候选框,然后在进入CNN,因为SPP-Net只需要一次对整张图片进行特征提取,速度会大大提升。
  3. 最后一步也是和R-CNN一样,采用SVM算法进行特征向量分类识别。
    在这里插入图片描述
    缺点
  • 需要存储大量特征
  • 训练时间长(25.5小时)
  • SPP层之前的所有卷积层不能fine tune
  • 复杂的多阶段训练

代码实现可以参考下面的文章:
SPP-Net代码实现

3.Fast R-CNN

受SPPnet启发,rbg在15年发表Fast R-CNN,它的构思精巧,流程更为紧凑,大幅提高目标检测速度。在同样的最大规模网络上,Fast R-CNN和R-CNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间。
论文链接:Fast R-CNN
在这里插入图片描述
与RCNN、SPP-Net对比的改进

  • 更快的train和test
  • 更高的mAP
  • 现实end-to-end(端到端)单阶段训练
  • 所有层参数可以fine tune
  • 不需要离线存储特征文件

在SPP-Net的基础上引入2个新技术

  • 感兴趣区域池化
  • 多任务损失函数
    在这里插入图片描述
    Fast R-CNN算法流程如下:
  1. 输入图像。
  2. 通过深度网络中的卷积层(VGG、Alexnet、Resnet等中的卷积层)对图像进行特征提取,得到图片的特征图;
  3. 通过选择性搜索算法得到图像的感兴趣区域(通常取2000个)。
  4. 对得到的感兴趣区域进行ROI pooling(感兴趣区域池化):即通过坐标投影的方法,在特征图上得到输入图像中的感兴趣区域对应的特征区域,并对该区域进行最大值池化,这样就得到了感兴趣区域的特征,并且统一了特征大小。
  5. 对ROI pooling层的输出(及感兴趣区域对应的特征图最大值池化后的特征)作为每个感兴趣区域的特征向量。
    将感兴趣区域的特征向量与全连接层相连,并定义了多任务损失函数,分别与softmax分类器和boxbounding回归器相连,分别得到当前感兴趣区域的类别及坐标包围框。
  6. 对所有得到的包围框进行非极大值抑制(NMS),得到最终的检测结果。

Fast R-CNN性能提升
在这里插入图片描述
代码实现可以参考下面的文章:
fast rcnn 代码解析

4.Faster R-CNN

经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。
论文地址:Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks
改进点:

  • 集成Region Proposal Network(RPN)网络
  • Faster R-CNN = Fast RCNN + RPN
  • 取代离线Selective Search模块
  • 进一步共享卷积层计算
  • 基于Attention注意机制
  • Region proposals量少质优(300左右)
    在这里插入图片描述
    Faster RCNN其实可以分为4个主要内容
  1. Conv layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。
  2. Region Proposal Networks。RPN网络用于生成region proposals。该层通过softmax判断anchors属于positive或者negative,再利用bounding box regression修正anchors获得精确的proposals。
  3. Roi Pooling。该层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,送入后续全连接层判定目标类别。
  4. Classification。利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得检测框最终的精确位置。

算法整体架构可以阅读:Faster RCNN 实现思路详解

Faster R-CNN性能提升
在这里插入图片描述
部分代码实现

FasterRCNN.py:

import tensorflow as tf
import numpy as np
from model.rpn import RegionProposalNetwork, Extractor
from model.roi import RoIHead
from utils.anchor import loc2bbox, AnchorTargetCreator, ProposalTargetCreator


def \_smooth\_l1\_loss(pred_loc, gt_loc, in_weight, sigma):
    # pred\_loc, gt\_loc, in\_weight
    sigma2 = sigma \*\* 2
    sigma2 = tf.constant(sigma2, dtype=tf.float32)
    diff = in_weight \* (pred_loc - gt_loc)
    abs_diff = tf.math.abs(diff)
    abs_diff = tf.cast(abs_diff, dtype=tf.float32)
    flag = tf.cast(abs_diff.numpy() < (1./sigma2), dtype=tf.float32)
    y = (flag \* (sigma2 / 2.) \* (diff \*\* 2) + (1 - flag) \* (abs_diff - 0.5 / sigma2))
    return tf.reduce_sum(y)


def \_fast\_rcnn\_loc\_loss(pred_loc, gt_loc, gt_label, sigma):
    """
 :param pred\_loc: 1,38,50,36
 :param gt\_loc: 17100,4
 :param gt\_label: 17100
 """
    idx = gt_label > 0
    idx = tf.stack([idx, idx, idx, idx], axis=1)
    idx = tf.reshape(idx, [-1, 4])
    in_weight = tf.cast(idx, dtype=tf.int32)
    loc_loss = _smooth_l1_loss(pred_loc, gt_loc, in_weight.numpy(), sigma)
    # Normalize by total number of negative and positive rois.
    loc_loss /= (tf.reduce_sum(tf.cast(gt_label >= 0, dtype=tf.float32)))  # ignore gt\_label==-1 for rpn\_loss
    return loc_loss


class FasterRCNN(tf.keras.Model):

    def \_\_init\_\_(self, n_class, pool_size):
        super(FasterRCNN, self).__init__()
        self.n_class = n_class
        self.extractor = Extractor()
        self.rpn = RegionProposalNetwork()
        self.head = RoIHead(n_class, pool_size)
        self.score_thresh = 0.7
        self.nms_thresh = 0.3

    def \_\_call\_\_(self, x):
        img_size = x.shape[1:3]
        feature_map, rpn_locs, rpn_scores, rois, roi_score, anchor = self.rpn(x)
        roi_cls_locs, roi_scores = self.head(feature_map, rois, img_size)

        return roi_cls_locs, roi_scores, rois

    def predict(self, imgs):
        bboxes = []
        labels = []
        scores = []
        img_size = imgs.shape[1:3]
        # (2000,84) (2000,21) (2000,4)
        roi_cls_loc, roi_score, rois = self(imgs)
        prob = tf.nn.softmax(roi_score, axis=-1)
        prob = prob.numpy()
        roi_cls_loc = roi_cls_loc.numpy()
        roi_cls_loc = roi_cls_loc.reshape(-1, self.n_class, 4)  # 2000, 21, 4

        for label_index in range(1, self.n_class):

            cls_bbox = loc2bbox(rois, roi_cls_loc[:, label_index, :])
            # clip bounding box
            cls_bbox[:, 0::2] = tf.clip_by_value(cls_bbox[:, 0::2], clip_value_min=0, clip_value_max=img_size[0])
            cls_bbox[:, 1::2] = tf.clip_by_value(cls_bbox[:, 1::2], clip_value_min=0, clip_value_max=img_size[1])
            cls_prob = prob[:, label_index]

            mask = cls_prob > 0.05
            cls_bbox = cls_bbox[mask]
            cls_prob = cls_prob[mask]
            keep = tf.image.non_max_suppression(cls_bbox, cls_prob, max_output_size=-1, iou_threshold=self.nms_thresh)

            if len(keep) > 0:
                bboxes.append(cls_bbox[keep.numpy()])
                # The labels are in [0, self.n\_class - 2].
                labels.append((label_index - 1) \* np.ones((len(keep),)))
                scores.append(cls_prob[keep.numpy()])
        if len(bboxes) > 0:
            bboxes = np.concatenate(bboxes, axis=0).astype(np.float32)
            labels = np.concatenate(labels, axis=0).astype(np.float32)
            scores = np.concatenate(scores, axis=0).astype(np.float32)

        return bboxes, labels, scores


class FasterRCNNTrainer(tf.keras.Model):

    def \_\_init\_\_(self, faster_rcnn):
        super(FasterRCNNTrainer, self).__init__()

        self.faster_rcnn = faster_rcnn
        self.rpn_sigma = 3.0
        self.roi_sigma = 1.0
        # target creator create gt\_bbox gt\_label etc as training targets.
        self.anchor_target_creator = AnchorTargetCreator()
        self.proposal_target_creator = ProposalTargetCreator()

    def \_\_call\_\_(self, imgs, bbox, label, scale, training=None):
        _, H, W, _ = imgs.shape
        img_size = (H, W)

        features = self.faster_rcnn.extractor(imgs, training=training)
        rpn_locs, rpn_scores, roi, anchor = self.faster_rcnn.rpn(features, img_size, scale, training=training)

        rpn_score = rpn_scores[0]
        rpn_loc = rpn_locs[0]

        sample_roi, gt_roi_loc, gt_roi_label = self.proposal_target_creator(roi, bbox.numpy(), label.numpy())
        roi_cls_loc, roi_score = self.faster_rcnn.head(features, sample_roi, img_size, training=training)

        # RPN losses
        gt_rpn_loc, gt_rpn_label = self.anchor_target_creator(bbox.numpy(), anchor, img_size)
        gt_rpn_label = tf.constant(gt_rpn_label, dtype=tf.int32)
        gt_rpn_loc = tf.constant(gt_rpn_loc, dtype=tf.float32)
        rpn_loc_loss = _fast_rcnn_loc_loss(rpn_loc, gt_rpn_loc, gt_rpn_label, self.rpn_sigma)
        idx_ = gt_rpn_label != -1
        rpn_cls_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)(gt_rpn_label[idx_], rpn_score[idx_])

        # ROI losses
        n_sample = roi_cls_loc.shape[0]
        roi_cls_loc = tf.reshape(roi_cls_loc, [n_sample, -1, 4])
        idx_ = [[i, j] for i, j in zip(tf.range(n_sample), tf.constant(gt_roi_label))]
        roi_loc = tf.gather_nd(roi_cls_loc, idx_)
        gt_roi_label = tf.constant(gt_roi_label)
        gt_roi_loc = tf.constant(gt_roi_loc)
        roi_loc_loss = _fast_rcnn_loc_loss(roi_loc, gt_roi_loc, gt_roi_label, self.roi_sigma)
        idx_ = gt_roi_label != 0
        roi_cls_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)(gt_roi_label[idx_], roi_score[idx_])

        return rpn_loc_loss, rpn_cls_loss, roi_loc_loss, roi_cls_loss


RPN网络:

import tensorflow as tf
import numpy as np
from utils.anchor import generate_anchor_base, ProposalCreator, _enumerate_shifted_anchor


class Extractor(tf.keras.Model):
    def \_\_init\_\_(self):
        super(Extractor, self).__init__()
        # conv1
        self.conv1_1 = tf.keras.layers.Conv2D(32, 3, activation='relu', padding='same')
        self.conv1_2 = tf.keras.layers.Conv2D(32, 3, activation='relu', padding='same')
        self.pool1 = tf.keras.layers.MaxPooling2D(2, strides=2, padding='same')

        # conv2
        self.conv2_1 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')
        self.conv2_2 = tf.keras.layers.Conv2D(64, 3, activation='relu', padding='same')
        self.pool2 = tf.keras.layers.MaxPooling2D(2, strides=2, padding='same')

        # conv3
        self.conv3_1 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')
        self.conv3_2 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')
        self.conv3_3 = tf.keras.layers.Conv2D(128, 3, activation='relu', padding='same')
        self.pool3 = tf.keras.layers.MaxPooling2D(2, strides=2, padding='same')

        # conv4
        self.conv4_1 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')
        self.conv4_2 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')
        self.conv4_3 = tf.keras.layers.Conv2D(256, 3, activation='relu', padding='same')
        self.pool4 = tf.keras.layers.MaxPooling2D(2, strides=2, padding='same')

        # conv5
        self.conv5_1 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')
        self.conv5_2 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')
        self.conv5_3 = tf.keras.layers.Conv2D(512, 3, activation='relu', padding='same')

    def \_\_call\_\_(self, imgs, training=None):
        h = self.pool1(self.conv1_2(self.conv1_1(imgs)))
        h = self.pool2(self.conv2_2(self.conv2_1(h)))
        h = self.pool3(self.conv3_3(self.conv3_2(self.conv3_1(h))))
        h = self.pool4(self.conv4_3(self.conv4_2(self.conv4_1(h))))
        h = self.conv5_3(self.conv5_2(self.conv5_1(h)))
        return h

class RegionProposalNetwork(tf.keras.Model):

    def \_\_init\_\_(self, ratios=[0.5, 1, 2], anchor_scales=[8, 16, 32]):
        super(RegionProposalNetwork, self).__init__()

        # region\_proposal\_conv
        self.region_proposal_conv = tf.keras.layers.Conv2D(512, kernel_size=3, activation=tf.nn.relu, padding='same')
        # Bounding Boxes Regression layer
        self.loc = tf.keras.layers.Conv2D(36, kernel_size=1, padding='same')
        # Output Scores layer
        self.score = tf.keras.layers.Conv2D(18, kernel_size=1, padding='same')


![img](https://img-blog.csdnimg.cn/img_convert/b0b11ec0d4b19e674d2c65adf3be1ab8.png)
![img](https://img-blog.csdnimg.cn/img_convert/d3ae0ee94d606456365db271c8222796.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

yer
        self.score = tf.keras.layers.Conv2D(18, kernel_size=1, padding='same')


[外链图片转存中...(img-xuxoVPz4-1715580202962)]
[外链图片转存中...(img-hmiQHsby-1715580202962)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

  • 20
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值