大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件

本文介绍了Flink的分布式运行时架构,包括两大组件:作业管理器(JobManager)和任务管理器(TaskManager)。JobManager作为任务调度的核心,由JobMaster和ResourceManager组成,负责作业管理和资源分配。TaskManager执行任务,与JobManager建立连接。在高可用设置下,JobManager可能有多个,其中一个是领导者。Flink可以独立部署,也可以与YARN、Kubernetes等资源管理器集成。
摘要由CSDN通过智能技术生成

于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以 Greenplum 为代表的 MPP(Massively Parallel Processing,大规模并行处理)架构,到 Hadoop、Spark 为代表的批处理架构,再到 Storm、Flink 为代表的流处理架构,都是以分布式作为系统架构的基本形态的。

我们已经知道,Flink 就是一个分布式的并行流处理系统。简单来说,它会由多个进程构成,这些进程一般会分布运行在不同的机器上。

正如一个团队,人多了就会难以管理;对于一个分布式系统来说,也需要面对很多棘手的问题。其中的核心问题有:集群中资源的分配和管理、进程协调调度、持久化和高可用的数据存储,以及故障恢复

对于这些分布式系统的经典问题,业内已有比较成熟的解决方案和服务。所以 Flink 并不会自己去处理所有的问题,而是利用了现有的集群架构和服务,这样它就可以把精力集中在核心工作——分布式数据流处理上了。Flink 可以配置为独立(Standalone)集群运行,也可以方便地跟一些集群资源管理工具集成使用,比如 YARN、Kubernetes。Flink 也不会自己去提供持久化的分布式存储,而是直接利用了已有的分布式文件系统(比如 HDFS)或者对象存储(比如 S3)。而对于高可用的配置,Flink 是依靠 Apache ZooKeeper 来完成的。

我们所要重点了解的,就是在 Flink 中有哪些组件、是怎样具体实现一个分布式流处理系统的。如果大家对 Spark 或者 Storm 比较熟悉,那么稍后就会发现,Flink 其实有类似的概念和架构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值