%pip install boto3
from langchain.embeddings import BedrockEmbeddings
embeddings = BedrockEmbeddings(credentials_profile_name=“bedrock-admin”)
embeddings.embed_query(“This is a content of the document”)
embeddings.embed_documents([“This is a content of the document”])
Azure OpenAI
我们加载OpenAI Embedding类,并设置环境变量以指示使用Azure端点。
设置用于 OpenAI 包的环境变量,以指示使用 Azure 端点
import os
os.environ[“OPENAI_API_TYPE”] = “azure”
os.environ[“OPENAI_API_BASE”] = “https://<your-endpoint.openai.azure.com/”
os.environ[“OPENAI_API_KEY”] = “your AzureOpenAI key”
os.environ[“OPENAI_API_VERSION”] = “2023-03-15-preview”
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(deployment=“your-embeddings-deployment-name”)
text = “This is a test document.”
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
Cohere
我们加载Cohere Embedding类:
from langchain.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key)
text = “This is a test document.”
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
DashScope
我们加载DashScope嵌入类:
from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model=‘text-embedding-v1’, dashscope_api_key=‘your-dashscope-api-key’)
text = “This is a test document.”
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents([“foo”])
print(doc_results)
DashScope
我们加载DashScope嵌入类:
from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model=‘text-embedding-v1’, dashscope_api_key=‘your-dashscope-api-key’)
text = “This is a test document.”
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents([“foo”])
print(doc_results)
Elasticsearch
使用Elasticsearch中托管的嵌入模型生成嵌入的操作步骤。通过下面的方式,可以很容易地实例化ElasticsearchEmbeddings
类。如果我们使用的是Elastic Cloud,则可以使用from_credentials
构造函数,如果我们使用的是Elasticsearch集群,则可以使用from_es_connection
构造函数:
!pip -q install elasticsearch langchain
import elasticsearch
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
定义模型 ID
model_id = ‘your_model_id’
如果我们希望使用from_credentials
进行测试,那么我们需要Elastic Cloud的cloud_id:
使用凭据实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id,
es_cloud_id=‘your_cloud_id’,
es_user=‘your_user’,
es_password=‘your_password’
)
为多个文档创建嵌入
documents = [
‘This is an example document.’,
‘Another example document to generate embeddings for.’
]
document_embeddings = embeddings.embed_documents(documents)
打印文档嵌入
for i, embedding in enumerate(document_embeddings):
print(f"文档 {i+1} 的嵌入:{embedding}")
为单个查询创建嵌入
query = ‘This is a single query.’
query_embedding = embeddings.embed_query(query)
打印查询嵌入
print(f"查询的嵌入:{query_embedding}")
同时,我们可以使用现有的Elasticsearch客户端连接进行测试,这可用于任何Elasticsearch部署:
创建 Elasticsearch 连接
es_connection = Elasticsearch(
hosts=[‘https://es_cluster_url:port’],
basic_auth=(‘user’, ‘password’)
)
使用 es_connection 实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
)
为多个文档创建嵌入
documents = [
‘This is an example document.’,
‘Another example document to generate embeddings for.’
]
document_embeddings = embeddings.embed_documents(documents)
打印文档嵌入
for i, embedding in enumerate(document_embeddings):
print(f"文档 {i+1} 的嵌入:{embedding}")
为单个查询创建嵌入
query = ‘This is a single query.’
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
上大数据开发知识点,真正体系化!**
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-B2nVaWTG-1712575265016)]