【技术人年末书单】2024年最受欢迎的10本技术书籍!大模型书籍!

一年将尽,我们如何勾勒自己的2024?

这里借用一位相熟多年书友的回答,“认真阅读,好好践行。”这种对阅读最朴素的认知,不失为抵抗现实焦虑的一剂良药。

年末将至,我们结合销量、口碑,阅读趋势,精选出最受欢迎的10本书

这份书单清晰呈现了“科技阅读”趋势的变化。

“求变”不再是永恒主题,抓住底层逻辑,以“不变”应万变,用理工科思维看世界,不做“码农”,做自己!技术人的世界在更丰富的语义层级中逐渐清晰!

大模型——2024的技术关键词

**▊《**大规模语言模型:从理论到实践》

张奇,桂韬,郑锐,黄萱菁 著

  • 复旦NLP团队新作

  • 从0分享研发MOSS大语言模型的实践经验

本书详细介绍了构建大语言模型的四个主要阶段:预训练、有监督微调、奖励建模和强化学习。每个阶段都有算法、代码、数据、难点及实践经验的详细讨论。

▊《多模态大模型:新一代人工智能技术范式(全彩)

刘阳 林倞 著

  • 多模态大模型的核心技术和典型应用

  • 中国工程院高文院士力荐给相关专业的学生和科研工作者

本书以深入浅出的方式介绍多模态大模型的技术方法、开源平台和应用场景,并详细阐述因果推理、世界模型及多智能体与具身智能等前沿技术领域,有助于读者全面了解多模态大模型的特点及发展方向,对新一代人工智能技术范式和通用人工智能的发展起到重要推动作用。

**▊《**LangChain入门指南:构建高可复用、可扩展的LLM应用程序》

李特丽 康轶文 著

  • 深入解析LangChain原理与工作机制

这本书专门为那些对自然语言处理技术感兴趣的读者提供了系统的LLM应用开发指南。全书分为11章,从LLM基础知识开始,通过LangChain这个开源框架为读者解读整个LLM应用开发流程。第1~2章概述LLM技术的发展背景和LangChain框架的设计理念。从第3章开始,分章深入介绍LangChain的6大模块,包括模型I/O、数据增强、链、记忆等,通过大量代码示例让读者了解其原理和用法。第9章通过构建PDF问答程序,帮助读者将之前学习的知识应用于实践。第10章则介绍集成,可拓宽LangChain的用途。第11章为初学者简要解析LLM的基础理论,如Transformer模型等。

修炼内功**,以底层的“不变”应对上层的“万变”**

**▊《**深入理解Linux进程与内存:修炼底层内功,掌握高性能原理》

张彦飞 著

  • 修炼底层内容,掌握高性能原理

  • 比国外计算机原理名著接地气,提供52个高频工程实践问题解决方案

  • 有助于更顺利地通过大厂的面试,用内功对抗职业焦虑

  • 300+幅底层原理彩色插图助力理解

国内大部分的开发者和公司都从事的是应用层的开发,平时大家更多关注的是应用层的开发技术。但应用层是建立在CPU和内存等硬件、操作系统内核、语言运行时的基础之上的。如果缺乏对这些底层知识的理解,驾驭技术的能力就无法精进,也很难开发出高性能、高稳定性的应用。本书主要包括CPU和内存硬件、进程创建和调度原理、虚拟内存底层机制、Go 用户态协程实现、容器cgroup资源限制,以及throttle、CPU利用率和负载等性能指标统计原理等内容,最后过渡到性能优化手段,带领大家修炼底层内功,掌握高性能原理。

用数据说话

**▊《**基础统计学(第14版)(双色)》

[美] Mario F.Triola(马里奥·F·特里奥拉) 著

钱辰江 等 译

  • 连续25年在美国统计类教材中排名第一

  • 更专业、更系统学统计数据分析、统计思维、批判性思维、科研数据分析

统计学是我们借以认识外部世界和人类社会的基本工具,无论是自然科学还是社会科学,都离不开统计学。然而,很多人一听到统计学,就会觉得枯燥无味,烦琐无聊。实际上,统计学的许多原理和规律与我们的日常生活息息相关,无论是投资、创业、就业、上学、就医,还是相亲、交友、结婚、生育,都会用到统计学的知识。善用统计学知识的人会更有智慧,能做出更好的人生抉择。你不信吗?那就请读读这本《基础统计学》,它通俗易懂,妙趣横生,案例精彩,数据丰富。翻阅这部著作,肯定会颠覆你对统计学的认知。

本书以浅显易懂的文字及贴近实际的案例,带领读者专业系统地学习统计思维和批判性思维,领略统计学的真实魅力。本书的第1~3 章着重介绍描述统计学;通过第4~6 章的概率分布逐渐过渡到第7~9 章的推断统计学;第10~15 章介绍了现代统计学中一些重要的实践方法,例如回归分析、拟合优度、方差分析、非参数检验等,读者可以根据自身的兴趣与背景学习相关内容。

《马同学图解线性代数》《马同学图解微积分(上)(下)****》

马同学(@马同学图解数学) 著

  • 看得懂又好看的数学,万人亲测的硬核教程

马同学图解微积分通过图解的形式,在逻辑上穿针引线,系统地讲解了大学公共课“线性代数”和“微积分”的相关知识点,对于相关专业的在校生和考研学子而言,这些知识点是必须攻克的堡垒;对于相关领域的从业人员而言,这些内容则是深造路上不可或缺的基石。

《马同学图解线性代数》引入了矩阵函数,从函数角度讲解了向量空间、线性方程组求解、矩阵的秩、行列式、相似变换、特征值特征向量、二次型等知识。

《马同学图解微积分 上》围绕着"线性相似”,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识。

《马同学图解微积分 下》继续以“线性近似”为导向,深入浅出地探讨了多元函数的极限、微分、重积分及其计算方法、曲线曲面积分及其计算方法、无穷级数等内容。全书逻辑上层层递进,再辅以精心挑选的各类例题和生动有趣的生活案例,大大降低了学习门槛,让高等数学不再高不可攀。

做生活的黑客

▊《开悟:数学黑客的生活之旅(双色)

树明 五边 著

  • 用数学思维理解世界,让生活、职场无往不利

“数学是一切科学的基础”,用好数学就能拥有更美好的未来。本书是一本讲解生活中的数学知识的科普读物,通过通俗易懂的生活案例讲解其背后的数学知识与生活原理。

全书共分为6章。第1章以“穿”为主题主要讲解公平分配的原理,来说明如何通过数学算法找到生活中的最优解。第2章以“吃”为主题讲解数学中的分形、极限,以及奥卡姆剃刀等,来说明如何利用数量和维度简化问题。第3章以“住”为主题讲解货币与空间的价值等,来说明如何构建认知空间。第4章以“行”为主题讲解24点数学游戏等,来说明选择权具有财务价值。第5章以“干”为主题讲解选择与努力的关系,来说明如何寻求最优决策。第6章以“爱”为主题讲解爱遵循的路径等,来说明如何从表象中找寻动机。

全书内容全面、紧贴生活,不仅适用于高校学生梳理数学知识,还适合作为已参加工作的人提升生活质量的指南。

2024,你“翻身”了吗?

▊《码农翻身**》**

刘欣(@码农翻身) 著

  • 用故事给技术加点料

常读的书大概有两种:一种讲故事,另一种传知识。前者愉悦身心,后者保养头脑。这本书是融合。作者把计算机元素和行为用拟人手法编成一个个精彩纷呈的故事,深入浅出地演绎晦涩枯燥的编程知识。不必说编程初学者可以津津有味地学习,连老手也能饶有兴致地查漏补缺。

本系列用故事的方式讲解了软件编程的若干重要领域,侧重于基础性、原理性的知识。

《码农翻身》,分为6章。第1章讲述计算机的基础知识;第2章侧重讲解Java的基础知识;第3章偏重Web后端编程;第4章讲解代码管理的本质;第5章讲述了JavaScript的历史、Node.js的原理、程序的链接、命令式和声明式编程的区别,以及作者十多年来使用各种编程语言的感受;第6章是作者的经验总结和心得体会,包括职场发展的注意事项、作为架构师的感想、写作的好处等。

《码农翻身 2》本书分为7章,第1章介绍了负载均衡和双机热备的原理,以及系统调用、阻塞、异步等重要概念;第2章介绍了session、token、缓存、数据复制、分布式ID、NoSQL 等后端编程必备的知识;第3章介绍了后端编程常用软件的原理;第4章介绍了各种编程语言的特性;第5章介绍了各种编程语言的本质;第6章介绍了网络安全相关知识;第7章则总结了作者多年的工作经验。

这不是一本编程的入门书,刚开始学习编程的“纯小白”读起来会比较吃力,读后可能会失望,但是稍有编程基础的读者读起来会非常过瘾,读后会产生一种“原来如此”的感觉。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值