近日,Deepseek 发布了一个新模型,这是一个在数学推理方面表现卓越的模型,即 DeepSeek Prover V2。
DeepSeek-Prover-V2 是一个专门使用 Lean 4 证明助手进行形式化定理证明的高级语言模型。
简单来说, DeepSeek-Prover-V2 旨在支持数学家和计算机科学家创建和验证形式化证明。
可以将其视为以绝对逻辑精确性解决复杂数学问题。它利用 Lean 4(一种专门用于数学推理的编程语言)来确保证明的每一步都经过严格验证。
主要特点
-
规模庞大:该模型拥有6710亿参数,并使用专家混合(Mixture-of-Experts, MoE)架构,以高效处理复杂的数学推理任务。
-
递归定理证明流程:训练数据是通过递归定理证明过程生成的,将复杂问题分解为子目标。
-
专精于Lean 4:专为Lean 4中的形式化定理证明而定制,对形式化方法领域的学者和开发者很有用。
-
开放访问与集成:该模型可在支持集成到应用程序和研究流程的平台上免费获取。
应用领域
-
自动定理证明:可以通过生成逐步证明来解决从高中到大学水平的数学问题。
-
证明中的错误检测:用于识别和纠正形式证明中的错误。
OpenRouter
OpenRouter 提供免费 API 密钥来运行这个新的 DeepSeek 模型。
https://openrouter.ai/
关注我内容的朋友们应该注意到,我经常使用OpenRouter进行新模型的测试。
免费API
-
访问 OpenRouter
-
搜索 DeepSeek-Prover-V2 (free) 并点击
-
向下滚动并生成免费 API
环境准备
-
Python (3.7+)
-
requests
库 -
OpenRouter API密钥
代码示例
import requests
import json
# 🔑 Your OpenRouter API Key (keep it secret, keep it safe)
key = 'your-api-key-here'
# ❓ Your math question
question = "solve x+y=10 and x-y=7 find x and y"
# 🌐 API Endpoint
url = "https://openrouter.ai/api/v1/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json"
}
# 💬 Define the chat payload
payload = {
"model": "deepseek/deepseek-prover-v2:free",
"messages": [
{"role": "system", "content": "you are dalton"},
{"role": "user", "content": question}
],
"stream": True
}
# 🧠 Handle streaming response like a pro
buffer = ""
with requests.post(url, headers=headers, json=payload, stream=True) as r:
for chunk in r.iter_content(chunk_size=1024, decode_unicode=True):
buffer += chunk
while True:
try:
line_end = buffer.find('\n')
if line_end == -1:
break
line = buffer[:line_end].strip()
buffer = buffer[line_end + 1:]
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
data_obj = json.loads(data)
content = data_obj["choices"][0]["delta"].get("content")
if content:
print(content, end="", flush=True)
except json.JSONDecodeError:
pass
except Exception:
break
输出
We are given:
x + y = 10
x - y = 7
Adding the two:
2x = 17 → x = 8.5
Substitute into first:
8.5 + y = 10 → y = 1.5
结果:
x = 8.5
,y = 1.5
专业提示
-
对于证明、推导或定理检查,使用不同的提示语。
-
如果你想一次性获得完整响应,使用
stream=False
。
结语
DeepSeek Prover V2在使符号推理变得易于访问和自动化方面迈出了一大步。
对教育、辅导或研究非常有用。
你可以将其扩展到证明、定理、逻辑谜题等更多领域。
你甚至可以在官方页面的 HuggingFace 推理部分免费试用该模型。
希望你能尝试这个模型。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓