中国大模型的 “赵心童时刻“:DeepSeek R2发布在即,起底其逆袭方法论

理性分析,DeepSeek之所以过年期间那么热,是因为开源和低成本,而不是因为它的生成效果就是最拔尖的。

至少从这篇回答的热度来看,持续了一个多月了,DeepSeek在知友心目中的热度消散得其实没那么快。

当然,DeepSeek确实当时一战封神了,因为它效果直逼当时闭源的ChatGPT o1,这可是当时推理模型号称最好的模型(先不说当时还仅在宣传阶段的o3)。

这让OpenAI不得不重新思考自己的收费价格和开源策略,并在后面做了针对性调整。

这让曾经的开源王者Llama也无比紧张,因为当时他们正在研发的Llama 4实测效果远不如DeepSeek。即使4月放出后,也出现在多项基准测试中,Llama 4的实际表现远低于官方宣传。

二、一鲸起,万物生:DeepSeek 如何搅动 AI 

DeepSeek事实在已经成为它LOGO所表现的那样,一鲸起,万物生

这一起,让腾讯元宝加持了DeepSeek之后,从原来的第二梯队不温不火,直接窜到了AI类APP前三。

这一起,让百度也不得不开始拥抱开源,计划开源百度文心大模型,当然,这个计划貌似有点慢,之前说是4月份,现在又拖到了6月底。

这一起,让很多AI大模型能力不太强的互联网公司仿佛找到了救命稻草,可以扬长避短,发挥自己在产品体验上的优势,做出用户更爱用的产品,比如360的纳米搜索

这一起,让众多硬件服务器供应商乐了,年后的DeepSeek一体机需求接踵而至,各大企业都要私有化部署DeepSeek,根据不同的预算可选择满血版,70B、32B蒸馏版等,号称接入了DeepSeek的企业,政府机构,医院,学校等等,多得我数都数不清。

这一起,对接toB企业的知识库问答也变成了刚需,也让众多拥有RAG增强检索生成优化能力的AI企业看到了更多的商机。

在互联网世界里,一个热词不可能持续火热,人们总是希望看新鲜感更强的新闻,但是,DeepSeek事实上已经深深影响到了方方面面。

三、DeepSeek 的“斯诺克赵心童时刻”:从草根黑马到行业

最近斯诺克世锦赛夺冠的赵心童,是一个只有外卡参赛、没有世界排名的“业余选手“,一举从资格赛开始八连胜,连克奥沙利文,马克·威廉姆斯两位冠军拿手到手软的传奇人物,成为中国首位、也是亚洲首位获得该赛事冠军的选手。

而DeepSeek有点像他一样,原来没什么热度,创业人员基本都是中国本土培养的,没有海外的高光履历,风头也不及国内的“AI六小虎”,但是不鸣则已,一鸣惊人

按最近的热度,我把DeepSeek的出圈定义为了"赵心童时刻",但从时间角度来看,是DeepSeek先火的,赵心童夺冠或许也可以定义为"DeepSeek时刻"。

DeepSeek让美国持续紧张,以至于逼迫NVIDIA将中国特供版H20芯片也断供了。皮衣黄也不得不穿上西装,喝上大酒,来到中国甲方爸爸这边,承诺再针对性地开发一款可以满足满足目前各种限制的新特供版。当然了,等你做出来了之后,我们要不要还是另外回事儿。

事实上,凭借自己过硬的实力,深度求索公司俨然已经掌握了开发AI大模型的核心要义。

四、万亿参数野望:DeepSeek 的“憋大招”

所以你说DeepSeek的热度会消散吗?那只是它正在闭关憋大招呢。它的一举一动,就如一位大明星一样,都会让人无比关注。行业对 DeepSeek 的持续关注,本质是对其技术潜力的期待:

这种关注,就是2月24日开始的DeepSeek开源周陆续开源了FlashMLA,通信库DeepEP,并行文件系统3FS等,覆盖了大模型训练、推理、存储等关键环节,技术深度和实用性获业界高度评价。

这种关注,就是DeepSeek更新其V3版本的新模型DeepSeek-V3-0324之后,其编程能力可以直接对标最强的Claude-3.7-sonnet。让其又热了一把。

这种关注,就是五一节前最后一天DeepSeek发布了数学定理证明模型DeepSeek-Prover-V2-671B被业界视为数学AI领域的重大突破。

这种关注,就是各大AI公司,无论是国外顶尖的,还是国内顶尖的,都在评测中自然而然地把DeepSeek加入对比栏,看看是不是超过了。

这种关注,还包括更加劲爆的DeepSeek R2坊间传闻参数规模或达1.2万亿,可实现全国产芯片训练,成本预计比GPT-4降低97%。其多模态能力可能扩展至文生视频领域。简直让人期待值拉满……

诚然,OpenAI的GPT o3的多步图片推理很强,DeepSeek目前还做不到;

豆包也加入了深度思考,在有时候我对比用的时候感觉也不弱于DeepSeek R1,甚至其多次思考多次检索的方式我认为改更合理一些。

阿里开源的Qwen-3-235B号称就吊打DeepSeek  R1,甚至小尺寸的32B模型在某些场景都能直逼R1,那基本上可以直接秒杀DeepSeek 70B版本了,在企业私有化部署场景下简直是福音。

我想,这也是DeepSeek给整个社会带来的价值,良性竞争,普惠大众,最终然后人人都能用得起AI。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我需要回答用户关于DeepSeek R2模型的详细信息和规格的问题。首先,我要检查提供的引用内容,看看是否有相关的信息。用户提供的引用1提到了BERT、T5等模型,讨论了预训练和微调的方法,但并没有提到DeepSeek R2。引用2是关于编译器优化的,引用3是Spark ML的代码示例,引用4是净室软件工程的解析。这些似乎都不直接相关。 因为没有直接相关的引用信息,我需要依靠自己的知识库。DeepSeek R2可能是一个大型语言模型,类似于BERT或GPT,但具体细节可能不公开。通常,这类模型的细节包括架构、参数量、训练数据、训练方法、应用场景等。 接下来,我需要组织回答的结构,确保符合用户的要求:使用中文,行内公式用$...$,独立公式用$$...$$,语法正确,生成相关问题。同时,引用需要自然添加,但现有引用中没有相关内容,可能需要说明无法引用。 最后,生成相关问题,确保与主题相关,帮助用户进一步探索。</think>关于DeepSeek R2模型,目前公开的技术细节较为有限。根据行业惯例推测,这类大型语言模型通常包含以下核心特征: 1. **架构设计** 可能基于Transformer架构,采用类似BERT或GPT的编解码结构,参数规模预计在$10^{10}$至$10^{11}$量级。其注意力机制可能引入稀疏计算优化,公式表示为: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 2. **训练特征** - 训练数据量级可能达到TB级别 - 采用混合训练目标(掩码语言建模+序列生成) - 使用分布式训练框架,支持千卡级并行训练 3. **性能表现** - 支持上下文窗口长度超过32k tokens - 在NLU任务中可能实现>90%的准确率 - 推理延迟控制在毫秒级响应 4. **应用接口** ```python # 伪代码示例 from deepseek import R2 model = R2.load_pretrained("r2-2.0") response = model.generate( prompt="解释量子纠缠现象", max_length=500, temperature=0.7 ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值