一、什么是LoRA?给小白的极简科普
如果把AI大模型比作一位全能学霸,LoRA就是让学霸快速掌握新技能的"记忆贴纸"。举个生活中的例子:当你想让ChatGPT学会写文言文,传统方法是让它重学所有知识(相当于重新训练整个模型),耗时又烧钱。而LoRA只需要给它贴一张"古风语法小抄"(低秩矩阵),就能实现相同效果。
这种技术全称Low-Rank Adaptation of Large Language Models(大模型低秩自适应),核心原理是通过低维度的参数矩阵调整模型行为。好比在原有神经网络上叠加一层轻量"补丁",只需训练原模型0.1%-1%的参数量,就能实现90%以上的微调效果。目前广泛应用于Stable Diffusion图像生成、ChatGPT领域适配等场景。
二、训练集准备:多样化与质量的平衡
训练集是 LoRA 模型的基石,高质量的训练集能够显著提升模型的表现。
-
多样化样本:
-
收集尽可能多角度、不同姿势、不同表情的训练对象图片。
-
如果训练对象有多种服装或造型,也应尽量包含在训练集中。
-
保证质量:
-
确保图片清晰,避免模糊、低分辨率或过度压缩的图片。
-
图片背景尽量简洁,突出训练对象主体。
-
多角度:
-
保证训练图片包含训练对象不同角度的图片,例如正面,侧面,背面
-
收集10-30张目标主体(如人物/服饰/画风)的图片
-
包含不同角度(正/侧/仰视)、表情、动作和背景组合
-
建议使用COS图/插画/3D模型截图混合搭配
三、数据预处理全流程
- 图片预处理:
-
使用图片处理软件(如 Photoshop、GIMP)或脚本将所有训练图片裁剪或缩放到 512x512 像素(可以用AI写批量处理脚本)。
-
使用 WD 1.4 Tagger(https://github.com/toriato/stable-diffusion-webui-wd14-tagger)为图片自动生成标签。这个工具可以安装在stable diffusion webui 中,也可以单独安装。
- 标注清洗:
-
安装 Dataset Tag Editor 的 web UI 插件(https://github.com/toshiaki1729/stable-diffusion-webui-dataset-tag-editor),这个工具可以安装在stable diffusion webui 中,方便对标签进行批量和单个图片的更改。
-
审核思路:
-
整体审核:浏览所有图片的标签,了解整体的标注质量。
-
批量调整:使用批量编辑功能,统一修改或删除某些标签。
-
单张修改:针对个别图片,手动调整标签,确保准确性。
-
明确不符合角色特质的错词: 删除或者修改与训练对象不相关的标签。
-
与训练对象本体识别特征密切相关的词: 确保与训练对象相关的标签都准确无误。
四、Kohya GUI训练参数详解
项目地址:https://github.com/bmaltais/kohya_ss
需提前安装Python3.10.11、CUDA 11.8 toolkit、Git和Visual Studio 组件
具体参考项目README
安装(Windows)
git clone https://github.com/bmaltais/kohya_ss``cd kohya_ss``#设置环境和安装依赖``.\setup.bat``#运行``.\gui.bat
Windows下推荐安装CUDNN,加快训练速度。我是在macOS上跑的训练,费了老大劲才配置好。
新手推荐参数
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
高级技巧
-
学习率设置:1e-4开始,loss波动大时降至5e-5
-
使用-xformers加速训练(需额外安装)
-
每隔200步保存检查点,通过TensorBoard监控loss曲线
常见问题处理
-
出现NaN值:降低学习率或减小batch_size
-
特征丢失:检查是否误删核心标签
-
过拟合表现:增加network_alpha或提前终止训练
四、效果验证方法论
-
基础测试:使用[触发词] + 简单prompt生成多尺寸图片
-
泛化测试:组合不同风格/场景(如赛博朋克背景+水墨风)
-
特征剥离测试:移除触发词观察特征保留度
建议训练完成后进行2-3次微调迭代,每次调整10%的关键参数,逐步逼近最佳效果。记住,好的LoRA应该像调味料——既能突出主味,又能兼容各种菜式!
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓