一文看懂大模型登记与大模型备案的区别

在科技飞速发展的今天,人工智能已经深入我们生活的方方面面。为了更好地规范和管理这一领域的发展,我国推出了两项重要措施:大模型登记和大模型备案。那么,这两者究竟有何区别呢?让我来为大家详细解读!

首先,我们需要明确两者的适用对象。大模型登记主要针对的是那些接入第三方API、利用其服务或功能的应用程序或平台。而大模型备案则适用于自行研发的大模型,尤其是那些进行了数据训练的AI模型。这意味着,如果你是开发者,且自己开发了AI模型并进行过训练,那么就需要进行备案。

其次,从要求程度上来看,大模型登记可能涉及更多的技术细节和服务商信息,如API接口的安全性评估、服务协议等。这表明登记过程更加注重对技术的可靠性和安全性进行审查。相比之下,大模型备案更侧重于模型的基本信息和合规性声明,比如模型的用途、数据来源以及是否符合相关法律法规的要求。

再者,目的上也有所不同。大模型登记主要是为了保证服务的安全性和质量标准,保护最终用户的权益不受损害。而大模型备案则是为了确保模型的透明度和可追溯性,便于监管部门了解市场上存在的各种模型及其基本情况,从而更好地进行行业监管。

jxh152637大模型备案

此外,材料数量也是一大区别。在大模型登记过程中,需要提交的材料相对较少,但必须包括语料标注规则等信息。而在备案时,则需要准备更多资料,以确保信息的完整性和准确性。

最后,关于备案号/上线编号和备案周期也有明确规定。大模型登记获得的为上线编号,有效期为3-4个月左右;而大模型备案则为备案编号,有效期同样为3-4个月以上。截至目前,已有26个大模型完成了登记(截止到8月份),188个模型通过了备案。

总之,无论是大模型登记还是大模型备案,都是我国加强对人工智能领域管理的重要举措。对于广大开发者来说,了解这些规定并严格遵守是非常必要的。让我们一起期待未来人工智能行业的健康发展吧!💪

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文转自 https://www.jianshu.com/p/92de3748c4c9,如有侵权,请联系删除。

### RAG模型概述 RAG(Retrieval-Augmented Generation)是一种融合了检索增强机制的生成型语言模型,由Facebook AI研究院(FAIR)提出。这种架构通过结合传统的基于检索的方法和现代的语言生成技术来提升自然语言处理任务的效果[^3]。 ### 工作原理详解 #### 数据获取阶段 在数据准备过程中,RAG利用外部知识库作为补充资源。当接收到输入查询时,系统首先会在预先构建的知识图谱或其他形式的大规模语料库中执行信息检索操作,找到最有可能帮助完成当前对话或任务的相关片段。 #### 动态上下文集成 不同于静态预训练模式下的纯生成方式,在线检索到的具体实例会被即时融入到解码器端口处,使得每次预测都能依据最新获得的真实世界证据来进行调整优化。这一特性赋予了RAG更强的情境适应能力,尤其是在面对开放领域问答、多轮次交互式聊天等复杂场景下表现尤为突出。 #### 双重评分机制 为了确保最终输出的质量,RAG采用了两步走策略:先是从候选集中挑选出若干高质量的回答选项;再经过一轮精细评估后决定最佳回复方案。具体来说就是分别计算每条建议得分——一方面考量它原始请求之间的匹配度;另一方面也要顾及内部连贯性和逻辑一致性等因素。 ```python def rag_model_inference(query, knowledge_base): retrieved_docs = retrieve_relevant_documents(query, knowledge_base) generated_responses = [] for doc in retrieved_docs: response = generate_response_based_on_document(doc) generated_responses.append(response) best_response = select_best_response(generated_responses) return best_response ``` ### 应用案例分析 实际应用方面,《大模型RAG实战:RAG原理、应用系统构建》一书中提供了丰富的实践指导和技术细节解析,涵盖了从理论基础到工程实现再到部署上线全流程的内容介绍。对于希望深入了解并掌握这项前沿技术的研究人员而言,这本书籍无疑是一个宝贵的学习资料来源[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值