Graph-RAG:知识图谱与大模型的融合

在数字化的浪潮中,知识的累积已非线性增长,以指数级的速度膨胀。我们站在一个信息过载的十字路口,迫切需要一种能力,能够穿透数据的迷雾,捕捉知识的精髓。本文将揭示 Graph-RAG 的神秘面纱,这是一种突破传统的技术,它将知识图谱的严谨结构与 RAG 的动态生成能力相结合,为我们提供了一种全新的理解和推理复杂数据的方法。

检索增强生成和知识图谱

检索增强生(RAG)成已成为将大语言模型(如 GPT-4)的输出与现实世界信息联系起来的主要范式。核心思想是从外部知识语料库中检索与用户查询相关的段落,并将它们添加到模型的上下文中,从而减少幻觉并提高事实准确性。然而,当前的 RAG 方法是为本地化检索设计的,答案存在于单个连续段落中。它们在需要汇总分布在多个文档中的信息的“全局”查询上表现不佳。

而这正是知识图谱可以发挥作用的地方。知识图谱将信息表示为实体(节点)和关系(边)的网络,紧密反映了人类结构知识的方式。通过不仅捕获原始事实,还捕获跨越多个文档的高阶关系,知识图谱开启了强大的推理能力:

  • 查询和遍历知识图谱,揭示看似不相关实体之间的多跳关系
  • 分析网络结构以识别聚类、异常值和影响力节点
  • 通过将图形算法与嵌入、逻辑和其他符号人工智能技术相结合

当与 RAG 集成时,知识图谱使推理过程能够在更广泛的上下文中进行分解,通过图遍历将可检索的本地邻域拼接在一起。来审视由大语言模型和知识图谱及其协同组合所启用的一些关键能力:

  • 知识提取:LLM 可以从非结构化文本中提取知识图谱,使得 RAG 模型能够利用结构化信息
  • 复杂推理:知识图谱通过明确编码实体关系,实现多跳推理,而 LLM 提供语义推理以解释图路径
  • 假设生成:将 LLM 的归纳推理与图模式挖掘结合起来,可以揭示潜在的连接以生成新颖的思路
  • 多模态语境:知识图谱可以整合文本、图像、表格和其他多种模态,使 RAG 模型能够对更丰富的语境进行推理
  • 可解释性:知识图谱通过实现中间检索和推理步骤作为明确结构,使推理过程更加透明

LLM 擅长知识提取、语言理解和生成,而知识图谱提供了复杂关系建模、网络分析和逻辑操作的结构化表示。整合这两者允许 RAG 模型检索与查询更相关的信息,将多个事实相结合以合成新知识,并提供更加扎实和可解释的输出。

Graph-RAG 适用场景

主要考虑因素是目标知识语料库底层的信息架构的复杂性。传统的 RAG 方法可以很好地服务于每篇文章都是自包含的平面文档集合。但是,通过它们在文档中的连接方式来定义的具有丰富关系结构的语料库,是 Graph-RAG 的主要对象。

  • 高关联性(网络化):概念与许多横向关系高度相互关联。理解需要穿越多个文档,思维发生于事物之间的连接方式。
  • 高层次(树状):信息被组织成嵌套的类别,具有明确定义的垂直关系。 意义构建需要下降级别的细节。
  • 低关联性/低层级(扁平):文件相对独立,意义构建可以局限于个别文章。

如果知识库具有高关联性或高层次结构(由网络或类似树状结构连接文档表示),这是 Graph-RAG 可能有价值的强烈信号。常见的场景:

  • 当用户查询涉及多个实体时,理解它们之间的关系可能需要跨文档跳转。知识图谱可实现这些跨文档连接,以便 RAG 模型在推理过程中高效遍历。对于涉及两个以上实体的查询而言,跨文档关系的潜在数量会激增,因此这一点尤为关键。
  • 在语料库上推导 聚合指标: 关于“找到总数 X”或“计算平均值 Y”的查询需要整合整个语料库中的信息。知识图可基于图结构(例如中心性、网络流)定义自定义聚合指标,这些指标可以作为节点属性实现。然后 RAG 模型可以简单地检索相关的预先计算的指标,而不是尝试动态地从原始文档进行聚合。
  • 在语料库上推导聚合指标:围绕 “查找总数 X” 或 “计算平均 Y” 的查询需要整合整个语料库的信息。知识图谱允许基于图结构(如中心性、网络流)定义自定义聚合指标,这些指标可以具体化为节点属性。然后,RAG 模型可以简单地检索相关的预先计算的指标,而不是试图从原始文档中动态聚合。
  • 理解因果链:对于调查因果关系的原因或方式查询,知识图谱允许捕获跨文档的影响链作为显式边缘。然后,RAG 模型可以沿着这些因果路径行走以了解起源和结果。这要比试图从文档间的词共现推断因果关系要高效得多。
  • 分析趋势和异常值:对于分析模式的查询,知识图谱可以根据它们的网络邻域计算实体之间的相似度,并标记出不同的实体。RAG 模型可以直接检索这些相似度分数或异常值标志,以识别趋势和异常情况。

企业复杂信息架构的一些真实示例中,知识图 RAG 非常有价值:

  • 客户支持:将产品手册和故障排除指南映射到知识图谱中,以便 RAG 模型可以在客户查询跨越多个工具或问题时找到最相关的指南。
  • 农业分析:将土壤读数、天气报告和作物生长记录的数据整合到一个以地理位置为中心的知识图中,以支持对地理环境的聚合推理。
  • 智能运营:构建日志流、性能指标和事件的知识图谱,以实现对操作数据的全面分析,找出问题的根本原因。
  • 业务分析:将销售、营销、产品和人力资源数据库连接成业务智能知识图谱,以支持需要 360 度上下文的战略查询。

这些例子的共同主题是信息分布在多个来源,但它们之间有丰富的关系结构连接着。传统的基于文件的 RAG 会低效,因为理解是发生在来源之间的关系中,而不仅仅是在单个来源内部。

Graph-RAG 不适用场景

虽然知识图谱 RAG 对这些场景有益,但也要意识到可能会过度使用的情况:

  • 查询单个实体:当大多数查询集中在单个实体上时,传统的 RAG 就足够了,因为相关的上下文很可能包含在以实体为中心的文档中。构建知识图谱的额外工作可能得不偿失。
  • 导航小型语料库:对于小型、专注的语料库(几百个文档),仅对文档本身进行索引可能已经足够,即使存在一些文档间的关系。对于小型语料库来说,传统的 RAG 模型可以处理更多的查询文档。
  • 叙事导向的意义构建:如果主要目标是理解主题和叙事(例如社交媒体品牌感知分析),重点更多地放在语言上而不是关系上。虽然知识图谱仍然可以帮助组织,但它们的关系推理能力可能并不是意义构建的核心。

识是否高度相互关联?

这个问题评估了知识语料库中实体之间关系的性质。在高度相互关联的知识领域中,实体之间紧密联系,形成复杂的关系网。这些相互关联可以代表各种类型的关系,如层级关系(例如,属于、部分),联想关系(例如,相关的、类似的),或因果关系(例如,导致、影响)。高度互联的领域例子包括生物系统(基因、蛋白质和途径之间有许多相互作用),社交网络(人们通过各种关系相连),以及立法系统(法律、案例和政策相互广泛引用)。如果发现知识高度相互连接,这表明基于图的表示法可以明确捕捉这些关系,比如知识图谱,可能对推理和查询有益。如果不是,应继续评估知识的其他特征。

知识是否也以层级结构呈现?

这个问题审视相互关联的知识是否也有清晰的层级组织。在层级结构的领域中,实体可以被组织成类别和子类别,形成类似树状或分类的结构。例如生物分类(物种被组织成属、科、目等),公司组织结构图(员工被组织成团队、部门和部门等),产品类别(产品被组织成类型、子类型和品牌)。如果知识既是相互关联的,又具有层次性,那么强烈暗示着捕捉横向关系和 Graph-RAG 可能是有益的。

知识是扁平且自包含的吗?

如果知识之间关联性不高,这个问题评估的是它是否具有扁平的结构,其中每个知识单元(例如文档)在很大程度上是自包含且独立于其他知识单元的。平面知识的例子包括百科全书文章(每篇文章都致力于全面涵盖一个主题),新闻报道(通常专注于单一事件或主题),以及产品评论(描述单个产品独立存在)。如果发现知识是平的并且自包含的,表明可能不需要知识图,因为模拟的跨单元关系很少。简单的文本检索方法可以满足对这种知识的查询和推理。如果知识既不高度相互连接也不是平的,表明存在一定程度的关联性需要进一步探索。

是否查询多个相关实体?

这个问题考察了针对知识的典型查询模式。如果查询经常涉及多个实体及它们之间的关系,这表明需要对实体连接进行有效的推理。例如,在生物医学领域,研究人员可能希望查询药物与基因相互作用如何影响某种疾病。这个查询涉及三个实体(药物、基因、疾病)及其关系(药物-基因相互作用,基因-疾病关联)。如果多实体关系查询很普遍,知识图谱可以提供一个强大的基础,以便高效地遍历和推理这些连接。如果不是,更简单的检索方法专注于单个实体可能就足够了。

是否分析语料库级别的趋势?

如果多实体查询不是重点,那么这个问题是在询问分析任务是否需要理解整个知识语料库中更广泛的模式和趋势。其中一些例子包括在科学文献集合中识别新兴的研究课题,随时间检测客户评论语料库中的情绪变化,或者理解社会政治问题在新闻文章中公众舆论的演变。语料库级别的趋势分析需要能够聚合和综合许多个体知识单元上的信息。知识图谱可以通过提供关键实体及其关系的鸟瞰视图,以及它们如何在知识空间中形成更大的集群或社区来促进这一过程。因此,Graph-RAG 可以支持高级模式的检测和解释。

是否正在推理因果链?

如果语料库级别的趋势不是焦点,这个最后的问题探讨的是推理任务是否涉及理解因果关系和影响链。例如,推理一个政策变化在不同领域中的涟漪效应,理解复杂系统中故障事件的传播,或者追踪引文网络中思想的流动。因果推理需要追踪影响路径的能力,并理解事件或实体如何在条件上相互依赖。知识图表擅长代表这些路径,并能够发现直接和间接的因果链。Graph-RAG 能够模拟效应在图表中的传播,并识别关键的中介实体和关系。

如果上述条件都不成立,即知识没有高度相互连接,无需多实体查询、语料库级别的趋势分析或因果推理,那么知识图可能会显得过度复杂,简单的文本检索方法也许就足够了。

结语

本文的探讨让我们认识到,Graph-RAG 不仅是一种技术进步,它更是一种思考方式的革新。Graph-RAG 系统以其独特的能力,让我们在数据的海洋中航行得更远,理解得更深。展望未来,我们期待这一系统能够继续进化,成为连接知识孤岛、激发创新思维的桥梁,引领我们进入一个更加智能和互联的信息时代。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文转自 https://blog.csdn.net/2401_85343303/article/details/141759476?spm=1001.2014.3001.5501,如有侵权,请联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值