论文解读:知识图谱融入预训练模型

K-ADAPTER是一种创新方法,它通过不改变预训练模型参数,仅添加额外的adapter结构,使模型能够融入知识图谱,提升了在知识导向任务上的性能。与以往方法相比,K-ADAPTER避免了知识冲突,支持多种知识图谱的灵活融合,并在关系分类、实体类型识别和问题回答等任务上表现出优越效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

©NLP论文解读 原创•作者 |疯狂的Max

论文解读:知识图谱融入预训练模型

背景及动机

以BERT为基础的预训练模型在各项NLP任务获得巨大的成功,与此同时,如何在泛化的预训练模型基础上融入某些特定领域的知识图谱以获得在特定领域内让模型有更优秀的表现,这一课题也一直备受关注。

然而大部分之前的将知识图谱融入预训练模型的工作都是将知识图谱的知识转化为知识导向的训练任务,通过更新整个模型的参数来进行训练,来实现知识图谱的融入。

这种方法虽然可以提升下游任务的效果,但是新类型的知识图谱注入时,之前已经注入的希望得以保存的知识会被冲刷,并且不同知识之间混合在一起,所以难以进一步研究和分析每种知识图谱各自的效果。

针对这样的问题,K-ADAPTER过一种灵活且简单的框架将多种知识图谱融入预训练模型中。K-ADAPTER保留原本的预训练模型参数不变,通过在预训练模型的中间层之外加入额外的模型结构,这也就是文中提到的adapter。

具体而言,作者用RoBERTa作为基础预训练模型,融入了两种类型的知识图谱:一种是维基百科三元组构成的知识图谱,另一种是基于句法依存的语法类知识图谱。

两种知识图谱对应的adapter是分别训练的,同时因为adapter需要更新的参数远小于RoBERTa,因此训练过程高效。训练好的模型在relation classification,entity typing和question answering这3个知识导向的下游任务上效果都优于RoBERTa。

论文解读:知识图谱融入预训练模型

将知识图谱融入预训练模型的几种模型

1.ERNIE:抽取WikiData的fact triples,并去除了少于3个实体的句子来进行预训练,其中实体的embedding是通过TransE基于WikiData的fact

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP论文解读

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值