数据预处理(data preprocessing)是指在主要的数据处理和分析之前,对数据进行的一系列准备和转换过程。这个过程的目标是提高数据质量,使其更适合于后续的数据挖掘、机器学习或其他分析任务。
数据预处理的主要方法包括:
数据清理:通过填写缺失的值、光滑噪声数据、识别或删除离群点并解决不一致性来“清理”数据。这主要包括格式标准化,异常数据清除,错误纠正,以及重复数据的清除。
数据集成:将多个数据源中的数据结合起来并统一存储,建立数据仓库的过程实际上就是数据集成。
数据变换:通过平滑聚集,数据概化,规范化等方式将数据转换成适用于数据挖掘的形式。
数据归约:数据挖掘时往往数据量非常大,在少量数据上进行挖掘分析需要很长的时间,数据归约技术可以用来得到数据集的归约表示,它小得多,但仍然接近于保持原数据的完整性,并结果与归约前结果相同或几乎相同。
数据预处理的重要性