如何使用 PyTorch 训练 LLM_pytorch llm用法简介(1),熬夜肝完这份Framework笔记

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Golang全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注go)
img

正文

hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softmax(output)
return output, hidden

四、损失函数和优化器

接下来,我们需要定义损失函数和优化器。对于语言模型任务,交叉熵损失函数是常用的选择。同时,我们将使用Adam优化器进行模型参数的更新。

import torch.optim as optim

定义损失函数

criterion = nn.NLLLoss()

定义优化器

optimizer = optim.Adam(model.parameters(), lr=0.001)

五、模型训练

现在,我们可以开始训练模型了。训练过程包括前向传播、损失计算、反向传播和参数更新等步骤。在本例中,我们将进行10个训练周期,每个周期包含5个批次的数据。

num_epochs = 10
for epoch in range(num_epochs):
for batch in train_iterator:

前向传播

outputs, hidden = model(batch.text)

计算损失

loss = criterion(outputs, batch.target)

反向传播

optimizer.zero_grad()
loss.backward()

参数更新

optimizer.step()

六、模型评估

训练完成后,我们需要对模型进行评估,以了解其性能。在本例中,我们将使用测试数据集对模型进行评估,并计算BLEU得分作为评价指标。

with torch.no_grad():
model.eval()
predictions = []
targets = []
for batch in test_iterator:
output, hidden = model(batch.text)
predictions.extend(output.argmax(dim=1).tolist())
targets.extend(batch.target.tolist())
bleu_score = bleu_score(targets, predictions)
print(f’BLEU Score: {bleu_score}')

七、模型保存和加载

最后,我们可以将训练好的模型保存到磁盘上,以便于后续使用或部署。同时,也可以加载已经训练好的模型进行推理或继续训练。

保存模型参数

torch.save(model.state_dict(), ‘model.pth’)

加载模型参数

model.load_state_dict(torch.load(‘model.pth’))

八、模型部署

训练并评估完模型后,下一步通常是将模型部署到生产环境中。部署模型时,需要考虑模型的运行环境、推理速度、可扩展性等方面。

  1. 运行环境:选择适合部署的硬件和操作系统,确保模型能在目标环境中正常运行。
  2. 推理速度:优化模型和代码,提高推理速度。可以考虑使用更高效的算法、减少不必要的计算、使用更快的硬件等。
  3. 可扩展性:设计模型架构时考虑可扩展性,以便在需要时能够轻松地扩展模型。
  4. 安全性:确保模型部署过程的安全性,防止数据泄露和恶意攻击。
  5. 监控和维护:建立监控系统,实时监测模型的性能和稳定性。定期对模型进行维护和更新,以保持其性能和准确性。

九、总结

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
-1713482050368)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值