社交网络分析5:社交网络信息传播动力学。信息传播 、传染病模型、博弈模型和物理系统模型 、传播动力学分析 、 未来发展趋势与展望_传染病模型社交网络(3)

本文探讨了社交网络中信息接收、发布、反馈和传播的机制,重点介绍了传染病模型、博弈模型和物理系统模型,以及信息传播的预测、动力学分析和传播距离、能量转换等关键概念。通过构建时变阻尼运动模型,提供了系统化的学习路径和在线资源,旨在帮助读者理解信息在社交网络中的复杂动态过程。
摘要由CSDN通过智能技术生成
信息接收
  • 受众:接收信息的人群。
  • 接收方式:受众如何接收和理解信息。
  • 接收效果:信息在受众中产生的影响。
信息发布
  • 信息源:信息的起始点。
  • 传播者:负责信息传播的个体或组织。
  • 传播渠道:用于信息传播的媒介或平台。
  • 受众:目标接收信息的人群。
信息反馈
  • 反馈渠道:受众向信息源或传播者反馈信息的方式。
  • 反馈方式:反馈的形式,如评论、分享等。
  • 反馈效果:反馈对信息源或传播者产生的影响。
信息传播的预测与控制
  • 实践应用:社交网络信息传播动力学分析在危机管理、舆情监控、营销等领域有广泛应用。

信息传播动力学研究的目标

在线社交网络上信息传播过程研究的核心问题之一是如何预测系统的变化。由于信息传播过程一般不能用线性系统表述,因此大多数情况下我们采用非线性动力学方法来进行建模。为了预测系统的未来状态,我们需要根据系统过去的历史数据和当前的状态信息,了解其在微小时间尺度的性质。

社交网络信息传播模型

在社交网络信息传播研究中,不同的模型被用来模拟和理解信息如何在网络中传播。这些模型通常分为三类:传染病模型、博弈模型和物理系统模型。

传播模型的基本要素

每种模型都有其独特的要素,这些要素帮助我们理解和预测社交网络中的信息传播行为。

传播者:发起和传递信息的人或组织
受众:接收和传播信息的人或组织
信息:被传播的内容和形式
传播渠道:信息传递的途径和媒介

传播模型的数学表达

这一部分将介绍各种模型的数学表达方式,以及它们是如何应用于社交网络信息传播的。

传染病模型

传染病模型是信息传播领域公认为比较成熟的模型,它将人群分为易感者(Susceptible)、感染者(Infectious)和治愈者(Recovered),信息从感染者传到易感者,易感者收到信息并成功转发后,自身转变为治愈者,完成个体状态的转换,直至系统达到一种稳定状态。

传统模型有 SI、SIR、SIS,这些模型均无法反映易感者转换为感染者之前有个潜伏期的事实,为此引入潜伏状态(Exposed),产生了 SEIR 模型在该类模型的发展过程中,近几年随着应用场景的不同出现了许多变体,比如具有两个时滞和垂直转移的 SEIRS 模型、基于情感交流的 HIT-SCIR模型和基于用户情绪的 SISa 模型等。

感染率:表示每个感染者平均能够传染给多少个易感者。
潜伏期:指从感染到发病的潜伏时间,这段时间内感染者可以传染给其他人。
免疫率:指人群中能够抵抗病毒的个体所占的百分比。
康复率:指从发病到康复的时间比例。

在这里插入图片描述

  1. SI(Susceptible-Infected)模型:这是最基本的传染病模型,它假设个体只有两种状态:易感染(Susceptible)和已感染(Infected)。在这个模型中,易感个体与感染者接触后,就会变成感染者。
  2. SIR(Susceptible-Infected-Recovered)模型:在SI模型的基础上增加了恢复(Recovered)状态。感染者在一段时间后会变成恢复者,恢复者不会再次感染。
  3. SIS(Susceptible-Infected-Susceptible)模型:与SIR模型不同,SIS模型中的个体在感染后并不会获得免疫,而是会再次变成易感状态。
  4. SEIR(Susceptible-Exposed-Infected-Recovered)模型:在SIR模型的基础上增加了暴露(Exposed)状态,即个体已经接触病原体但还没有表现出感染。
  5. SEIRS(Susceptible-Exposed-Infecte
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值