万字详解:向量数据库:原理、索引技术与选型指南
关键词:向量数据库、向量检索、相似性搜索、ANN算法、HNSW、量化技术、嵌入模型、多模态搜索、RAG架构
摘要:本文深入剖析向量数据库的核心原理、索引技术和实际应用场景。从向量表示学习的基础概念出发,详细介绍了向量相似度计算方法、主流索引算法(如HNSW、IVF、LSH等)的工作机制,以及向量量化技术。文章对比分析了当前主流向量数据库产品的技术特点与性能表现,并提供了实际应用中的选型指南和最佳实践。同时,结合RAG架构等AI应用场景,探讨了向量数据库在多模态搜索、语义检索等领域的实际应用与未来发展趋势。
1. 核心概念:向量数据库基础
1.1 问题背景
随着人工智能技术的迅猛发展,特别是大语言模型(LLM)和多模态模型的广泛应用,传统关系型数据库在处理非结构化数据和语义搜索方面的局限性日益凸显。在这一背景下,向量数据库作为专门针对高维向量数据进行高效存储和相似性检索的新型数据库系统,正迅速成为AI应用基础设施的关键组件。
1.2 问题描述
向量数据库需要解决的核心问题是:如何在包含数百万甚至数十亿高维向量的数据集中,快速找到与查询向量最相似的K个向量。这一问题在数学上可以