还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!
王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。
对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!
【完整版领取方式在文末!!】
93道网络安全面试题
内容实在太多,不一一截图了
黑客学习资源推荐
最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
1️⃣零基础入门
① 学习路线
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
② 路线对应学习视频
同时每个成长路线对应的板块都有配套的视频提供:
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
原理类似,即使用一个RNN文字信息转化为vector,然后在另一个RNN的每一个结点都输入这个vector:
可以将左边的RNN视为一个Encoder(编码器),右边的RNN视为一个Decoder(解码器),这两者是一起训练的。这也是Sequence to Sequence learning的想法:
1.2.3 Chat-bot(聊天机器人)
对于聊天机器人来说,这件事可能会是更困难的。因为除了要回答上一句话,还要关注聊天过程中其他说过的话,不然就会出现重复的情况。可以设计一种双层的Encoder,一层用于将说过的话编码,一层用于将对方刚刚的话编码,两者混合编码之后再丢入Decoder中:
2 Attention
Attention简而言之就是Dynamic Conditional Generation(动态的条件生成)。刚刚的做法是每一个时间点都接入相同的vector,但是可以使的每一个时间点接入不同的vector。这样做有什么好处呢?比如当你的input很复杂,无法用一个vector来描述。如果每次都是参考整个句子的vector,可能会使得多余的信息影响当前输出的训练,比如输出的“machine”仅参考“机器”会训练的更好:
2.1 Machine Translation(Attention-based Model)
机器翻译使用attention这件事怎么做呢?首先使用输入“机器学习”到一个RNN中,每一个字都可以在RNN的Hidden Layer的output获得一个vector。接下来有个初始的向量
z
0
z^0
z0,将这个
z
0
z^0
z0和
h
1
h^1
h1进行match配对产生一个匹配度的描述
a
0
1
a^1_0
a01:
这个match可以自定义,可以使用cosine或者一个小的NN模型,使得输出为一个scalar数值,这个match可以和整个模型一起learn:
得到了4个
α
0
1
α
0
2
α
0
3
α
0
4
\begin{array}{llll}\alpha_{0}^{1} & \alpha_{0}^{2} & \alpha_{0}^{3} & \alpha_{0}^{4}\end{array}
α01α02α03α04,再经过一层softmax(不是必要的)之后,得到
α
^
0
1
α
^
0
2
α
^
0
3
α
^
0
4
\begin{array}{cccc}\hat{\alpha}_{0}^{1} & \hat{\alpha}_{0}^{2} & \hat{\alpha}_{0}^{3} & \hat{\alpha}_{0}^{4}\end{array}
α01α02α03α04使得这些值的和为1。根据这4个值,可以得到
c
0
=
∑
α
^
0
i
h
i
=
0.5
h
1
0.5
h
2
\begin{aligned} c^{0} &=\sum \hat{\alpha}_{0}^{i} h^{i} =0.5 h^{1}+0.5 h^{2} \end{aligned}
c0=∑α^0ihi=0.5h1+0.5h2,将其作为Decoder Input,得到“machine”的输出(因为权值较大)。
使用
z
1
z^1
z1重复刚刚的操作:
这个过程一直持续,直到停止。
2.2 Speech Recognition
2.3 Image Caption Generation(Attention-based Model)
那么image怎么加上attention-base model呢?可以用一组vector来描述一张图片,将CNN的filter前的矩阵当作z0,然后将filter的输出做weight sum,得到红色的vector,然后输入到RNN的Decoder就可以得到z1,也可以输出word1。以此类推。
实验可以表明在产生相应词汇的时候机器注意的点是不同的:
2.4 Memory Network
在这个上面做attention,最常用在阅读理解上面。Document中有很多句子的vector,然后将提出的问题也处理为一个vector。同样的使得q和x进行match得到a,求weight sum,作为Extracted Information和问题一起丢进DNN中,就可以获得Answer。这整个模型是可以一起训练的:
还有一个更复杂的版本,将Document中的句子转换成两种不同的向量,也就是拿去和q进行match的向量和Extracted Information中使用的向量不一样,这样能有更好的结果。补充一点:最后的Extracted Information可以拿去和q相加作为新的问题输入,这叫做Hopping:
一个更复杂的版本。使用两层的vector,计算attention,再计算weight sum,再传到下一层vector,最后再使用DNN:
2.5 Neural Turing Machine(神经图灵机)
一般的做法是在Memory上面做attention,这个可以根据match score修改存在Memory里面的内容。不只是读Memory,也可以写Memory。
如下图,是现有一个初始的attention(蓝色),计算的结果是
r
0
r^0
r0,然后把
给大家的福利
零基础入门
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
同时每个成长路线对应的板块都有配套的视频提供:
因篇幅有限,仅展示部分资料
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!