Day06关系图卷积神经网络笔记

关系图卷积神经网络概述

关系图卷积神经网络(R-GCN)是一种专门用于处理异质图的神经网络模型。与同质图相比,异质图具有多种节点类型和关系类型,这使得传统的图卷积神经网络在处理时面临挑战。R-GCN通过引入关系特定的转换矩阵,实现了对异质图中不同类型节点和关系的有效建模。

减少模型参数量并缓解过拟合

  • 基底分解(Basis Decomposition)

为了减少模型的参数量并缓解过拟合问题,R-GCN提出了基底分解的方法。该方法将每个关系特定的转换矩阵分解为一组共享的基底矩阵的线性组合。通过共享基底矩阵,可以大幅度减少模型的参数数量,同时保留足够的表达能力来处理不同类型的关系。

  • 块对角矩阵分解(Block Diagonal Decomposition)

除了基底分解外,R-GCN还采用了块对角矩阵分解的方法来进一步减少参数。块对角矩阵分解将关系特定的转换矩阵分解为多个较小的块对角矩阵,每个块对应一个节点类型。这种分解方式能够减少参数之间的耦合,提高模型的泛化能力。

应用:补全知识图谱

知识图谱是一种重要的图数据结构,用于表示实体之间的关系。然而,即使是大型知识图谱也存在信息不完整的问题,这对下游应用产生了不利影响。R-GCN作为一种强大的图神经网络模型,在知识图谱补全任务中具有重要的应用价值。

  • 7
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要导入必要的库和数据集。在这里,我们将使用“airquality”数据集来进行像回归。 ```R library(keras) library(tensorflow) library(dplyr) data("airquality") ``` 接下来,我们需要对数据集进行预处理。由于卷积神经网络需要的输入是像,因此我们需要将数据集转换为像。我们可以使用ggplot2库将数据可视化为像。 ```R library(ggplot2) airquality %>% ggplot(aes(x=Month, y=Day, fill=Ozone)) + geom_tile() + scale_fill_gradient(low="white", high="blue") + theme_void() -> img img <- as.raster(print(img, vp=viewport(width=4, height=4, units="in", clip="on"))) img <- image_to_matrix(img)[,,1] ``` 在这里,我们将“airquality”数据集中的“Month”和“Day”作为像的横纵坐标,将“Ozone”作为像的颜色填充。然后,我们使用ggplot2库的“geom_tile”函数将数据可视化为热力。接下来,我们使用“scale_fill_gradient”函数将颜色映射到白色到蓝色的颜色范围内。最后,我们使用“as.raster”函数将像转换为光栅像,并使用“image_to_matrix”函数将其转换为像矩阵。在这里,我们只使用了R中的一个数据点来生成像矩阵,但是在实际应用中,我们需要对整个数据集进行相同的操作。 接下来,我们将使用“image_data_generator”函数来生成训练数据和测试数据。在这里,我们将使用5个折叠来进行k折交叉验证。 ```R n_fold <- 5 batch_size <- 16 train_datagen <- image_data_generator( rescale = 1/255, validation_split = 1/n_fold ) train_generator <- flow_images_from_data( img_array = img, generator = train_datagen, batch_size = batch_size, shuffle = TRUE, subset = "training" ) validation_generator <- flow_images_from_data( img_array = img, generator = train_datagen, batch_size = batch_size, shuffle = TRUE, subset = "validation" ) ``` 在这里,我们使用“rescale”参数将像像素值的范围从0到255缩放到0到1之间。然后,我们使用“validation_split”参数将数据集分成训练集和验证集。接下来,我们使用“flow_images_from_data”函数将数据集转换为可以用于训练的数据生成器。 接下来,我们将定义一个卷积神经网络模型。在这里,我们将使用一个包含3个卷积层和3个池化层的模型。 ```R model <- keras_model_sequential() %>% layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = dim(img)) %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_flatten() %>% layer_dense(units = 128, activation = "relu") %>% layer_dropout(rate = 0.5) %>% layer_dense(units = 1, activation = "linear") summary(model) ``` 在这里,我们使用“keras_model_sequential”函数创建了一个序列模型。然后,我们使用“layer_conv_2d”函数添加3个卷积层和“layer_max_pooling_2d”函数添加3个池化层。接下来,我们使用“layer_flatten”函数将卷积层的输出展平,并使用“layer_dense”函数添加2个全连接层。最后,我们使用“layer_dropout”函数添加一个dropout层,并使用“layer_dense”函数添加一个输出层。 在定义好模型后,我们需要编译模型并训练模型。 ```R model %>% compile( optimizer = optimizer_rmsprop(), loss = "mse", metrics = c("mae") ) history <- model %>% fit_generator( generator = train_generator, validation_data = validation_generator, steps_per_epoch = 50, epochs = 10 ) ``` 在这里,我们使用“optimizer_rmsprop”函数作为优化器,并使用“mse”作为损失函数。我们还使用“mae”作为度量指标。然后,我们使用“fit_generator”函数训练模型。在这里,我们使用“train_generator”作为训练数据生成器,使用“validation_generator”作为验证数据生成器,使用“steps_per_epoch”参数指定每个epoch中使用的训练步数,使用“epochs”参数指定训练的epoch数。 最后,我们可以使用“evaluate_generator”函数评估模型的性能。 ```R model %>% evaluate_generator( generator = validation_generator, steps = 50 ) ``` 在这里,我们使用“validation_generator”作为验证数据生成器,并使用“steps”参数指定评估模型时使用的步数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值