用取余算法计算题目

一.

假设在n进制下,下面的等式成立,567*456=150216,n的值是()
A.9 B.10 C.12 D.18

1.根据个位数判断:

若n=10,那么567*456的个位数根据7*6=42,个位数为2

得出:

判断是否6*7%n=6

排除A选项

2.猜测结果:

当n=10时,567*456的结果为250000左右,比150216大将近一半,故n的值应该比是大将近一般的值。猜测答案为18.

3.完整计算方法:

(5*n^2+6*n+7)*(4*n^2+5*n+6)=20*n^4+49*n^3+88*n^2+71*n+42//化简整理

150216=n^5+5*n^4+2*n^2+n+6

因为左右两边的值都相等,故左右两边同时对n取余后左右两边的值相等。

[20*n^4+49*n^3+88*n^2+71*n+42]%n=42%n

[n^5+5*n^4+2*n^2+n+6]%n=6%n (因为选项均大于6)—>6%n=6

(1)判断:

42%n是否等于6,排除A项

(2)计算:

20*n^4+49*n^3+88*n^2+71*n+42=n^5+5*n^4+2*n^2+n+6

左右两边同时除以n,再对n取余

判断(71+42/n)%n=(1+6/n)%n

带入判断得出正确答案为:D.18

二.例题

例题:

假设在n进制下,下面的等式成立,123*321=86673,n的值是()
A.8 B.9 C.16 D.12

解:

123=n^2+2*n+3

321=3*n^2+2*n+1

123*321=(n^2+2*n+3)*(3*n^2+2*n+1)=3*n^4+8*n^3+14*n^2+8*n+3

86673=8*n^4+6*n^3+6*n^2+7*n+3

得出:3*n^4+8*n^3+14*n^2+8*n+3=8*n^4+6*n^3+6*n^2+7*n+3

1.

两边同时对n取余得:

3%n=3%n(不能判断)

2.

两边同时除以n,在对n取余得:

(8+3/n)%n=(7+3/n)%n

3.

两边同时除以n^2,在对n取余得:

(14+8/n+3/n^2)%n==(6+7/n+3/n^2)%n

带入判断结果为8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值