% 导入相关的库和模型
% 假设你已经有了无人机的动力学模型以及相关算法的实现
% 设置无人机和障碍物的初始位置和目标位置
startPos = [0, 0]; % 无人机初始位置
goalPos = [10, 10]; % 目标位置
obstaclePos = [5, 5]; % 障碍物位置
% 设置参数
k_att = 1; % 人工势场引力增益
k_rep = 5; % 人工势场斥力增益
eta = 0.5; % 控制障碍函数增益
% 开始路径规划循环
while true
% 获取当前无人机位置
currentPos = getCurrentPosition(); % 假设有函数可以获取当前无人机位置
% 计算人工势场引力
attForce = k_att * (goalPos - currentPos);
% 计算人工势场斥力
repForce = k_rep * (currentPos - obstaclePos) / norm(currentPos - obstaclePos)^3;
% 计算控制障碍函数
CBF = (currentPos - obstaclePos)' * (goalPos - obstaclePos) + eta * norm(currentPos - obstaclePos)^2;
% 如果控制障碍函数小于等于0,则无人机处于安全区域,可以直接飞向目标位置
if CBF <= 0
controlSignal = attForce;
else
% 否则,添加斥力项来避免障碍物
controlSignal = attForce + repForce;
end
% 更新无人机位置
updatePosition(controlSignal); % 假设有函数可以根据控制信号更新无人机位置
% 判断是否到达目标位置
if norm(currentPos - goalPos) < 0.1 % 假设到达目标位置的阈值为0.1
break;
end
% 可视化显示路径规划过程
plotPath(currentPos, goalPos, obstaclePos); % 假设有函数可以将路径规划过程可视化显示
end
% 输出最终路径规划结果
disp(‘无人机已到达目标位置!’);