以下是一个基于注意力机制卷积神经网络结合门控单元(CNN-GRU)和自适应注意力机制(SAM-Attention)的柴油机故障诊断的示例Matlab代码:
matlab
% 设置参数
inputSize = [32 32 3]; % 输入图像尺寸
numClasses = 10; % 类别数
numFilters = 32; % 卷积核数量
filterSize = 3; % 卷积核尺寸
sequenceLength = 10; % 序列长度
hiddenSize = 64; % GRU隐藏层大小
attentionSize = 64; % 注意力层大小
% 构建CNN-GRU-SAM模型
layers = [
imageInputLayer(inputSize)
convolution2dLayer(filterSize, numFilters, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, ‘Stride’, 2)
convolution2dLayer(filterSize, numFilters2, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, ‘Stride’, 2)
convolution2dLayer(filterSize, numFilters4, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, ‘Stride’, 2)
recurrentLayer(hiddenSize, ‘OutputMode’, ‘sequence’)
attentionLayer(attentionSize)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
% 数据准备
% 这里假设你有柴油机故障数据集,包括图像和标签
% 假设训练集为 trainImages、trainLabels,测试集为 testImages、testLabels
% 数据增强
augmentedTrainImages = augmentedImageDatastore(inputSize, trainImages, ‘ColorPreprocessing’, ‘gray2rgb’);
augmentedTestImages = augmentedImageDatastore(inputSize, testImages, ‘ColorPreprocessing’, ‘gray2rgb’);
% 训练模型
options = trainingOptions(‘adam’, …
‘ExecutionEnvironment’, ‘gpu’, …
‘MaxEpochs’, 10, …
‘MiniBatchSize’, 64, …
‘Plots’, ‘training-progress’);
model = trainNetwork(augmentedTrainImages, trainLabels, layers, options);
% 预测
predictedLabels = classify(model, augmentedTestImages);
% 评估模型
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
disp(['准确率: ’ num2str(accuracy)]);
请注意,以上代码仅为示例,实际应用中需要根据你的数据集和任务进行适当的调整和优化。另外,确保你已经安装了Matlab的深度学习工具箱(Deep Learning Toolbox)和相关依赖包。
分享