基于注意力机制卷积神经网络结合门控单元CNN-GRU-SAM-Attention实现柴油机故障诊断附matlab代码

以下是一个基于注意力机制卷积神经网络结合门控单元(CNN-GRU)和自适应注意力机制(SAM-Attention)的柴油机故障诊断的示例Matlab代码:

matlab

% 设置参数
inputSize = [32 32 3]; % 输入图像尺寸
numClasses = 10; % 类别数
numFilters = 32; % 卷积核数量
filterSize = 3; % 卷积核尺寸
sequenceLength = 10; % 序列长度
hiddenSize = 64; % GRU隐藏层大小
attentionSize = 64; % 注意力层大小

% 构建CNN-GRU-SAM模型
layers = [
imageInputLayer(inputSize)
convolution2dLayer(filterSize, numFilters, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, ‘Stride’, 2)
convolution2dLayer(filterSize, numFilters2, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, ‘Stride’, 2)
convolution2dLayer(filterSize, numFilters
4, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, ‘Stride’, 2)
recurrentLayer(hiddenSize, ‘OutputMode’, ‘sequence’)
attentionLayer(attentionSize)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

% 数据准备
% 这里假设你有柴油机故障数据集,包括图像和标签
% 假设训练集为 trainImages、trainLabels,测试集为 testImages、testLabels

% 数据增强
augmentedTrainImages = augmentedImageDatastore(inputSize, trainImages, ‘ColorPreprocessing’, ‘gray2rgb’);
augmentedTestImages = augmentedImageDatastore(inputSize, testImages, ‘ColorPreprocessing’, ‘gray2rgb’);

% 训练模型
options = trainingOptions(‘adam’, …
‘ExecutionEnvironment’, ‘gpu’, …
‘MaxEpochs’, 10, …
‘MiniBatchSize’, 64, …
‘Plots’, ‘training-progress’);

model = trainNetwork(augmentedTrainImages, trainLabels, layers, options);

% 预测
predictedLabels = classify(model, augmentedTestImages);

% 评估模型
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
disp(['准确率: ’ num2str(accuracy)]);
请注意,以上代码仅为示例,实际应用中需要根据你的数据集和任务进行适当的调整和优化。另外,确保你已经安装了Matlab的深度学习工具箱(Deep Learning Toolbox)和相关依赖包。

分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值