以下是使用卡尔曼滤波(Kalman Filter)进行SOC(State of Charge)估计的Simulink实现示例:
创建一个新的Simulink模型。
在模型中添加以下模块:
输入端口:用于接收电池电流和电池电压测量值。
Output端口:用于输出SOC估计结果。
Kalman Filter模块:用于实现卡尔曼滤波算法。
常数模块:用于设置初始的SOC估计值。
乘法模块:用于计算电流和电压的乘积。
加法模块:用于计算电流和电压乘积的总和。
连接模块:
将输入端口连接到乘法模块的输入。
将电压测量值连接到乘法模块的输入。
将乘法模块的输出连接到加法模块的一个输入。
将电流值连接到加法模块的另一个输入。
将加法模块的输出连接到Kalman Filter模块的输入。
将Kalman Filter模块的输出连接到Output端口。
将常数模块的输出连接到Kalman Filter模块的初始状态输入。
配置Kalman Filter模块:
设置状态向量维度和测量向量维度。
配置状态转移矩阵、测量矩阵、过程噪声协方差矩阵和测量噪声协方差矩阵。
设置初始状态和协方差矩阵。
配置模型参数:
设置仿真时间步长和仿真时间。
配置输入端口的维度和数据类型。
配置Output端口的维度和数据类型。
运行模型进行仿真,观察SOC估计结果。