【JCR一区级】Matlab实现向量加权平均算法INFO-Transformer-GRU负荷数据回归预测算法研究

实现INFO算法:编写MATLAB代码实现向量加权平均算法(INFO)。INFO可能需要定义向量加权平均的具体方式和权重计算方法。
实现Transformer模型:使用MATLAB实现Transformer模型。Transformer模型用于特征提取和序列建模,可用于处理时间序列数据。
实现GRU模型:编写MATLAB代码实现门控循环单元(GRU)模型。GRU是一种适用于序列数据的循环神经网络模型。
负荷数据回归预测算法:将INFO算法、Transformer模型和GRU模型结合起来,构建负荷数据回归预测算法。这个算法可以用于预测负荷数据的趋势和变化。
% 实现向量加权平均算法(INFO)
function weighted_average = INFO(data)

% INFO算法实现,计算向量加权平均

end

% 实现Transformer模型
function transformer_model = create_transformer_model()

% Transformer模型实现

end

% 实现GRU模型
function gru_model = create_gru_model()

% GRU模型实现

end

% 负荷数据回归预测算法
function predicted_data = load_regression_prediction(data)

% 结合INFO算法、Transformer模型和GRU模型进行负荷数据回归预测

end

% 主程序
data = load(‘load_data.mat’);
weighted_average = INFO(data);
transformer_model = create_transformer_model();
gru_model = create_gru_model();
predicted_data = load_regression_prediction(data);

% 显示预测结果
disp(predicted_data);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值