结尾
正式学习前端大概 3 年多了,很早就想整理这个书单了,因为常常会有朋友问,前端该如何学习,学习前端该看哪些书,我就讲讲我学习的道路中看的一些书,虽然整理的书不多,但是每一本都是那种看一本就秒不绝口的感觉。
以下大部分是我看过的,或者说身边的人推荐的书籍,每一本我都有些相关的推荐语,如果你有看到更好的书欢迎推荐呀。
开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】
特征选择是建立决策树之前的十分重要的一步。如果是随机的选择特征,那么所建立决策树的学习效率就会大打折扣。举例:银行采用决策树来解决信用卡审批问题,判断是否向某人发放信用卡可以根据其年龄,工作单位,是否有不动产,历史信贷情况等特征决定。而选择不同的特征,后续生成的决策树就会不一致,这种不一致最终会影响到决策树的分类效率。
通常我们在选择特征的时, 会考虑到两种不同的指标,分别为:信息增益和信息增益比。这里就要谈到信息论中的另一个常见的名词:熵。
熵(Entropy)是表示随机变量不确定性的度量。简单来说:熵越大,随机变量的不确定性就越大,而特征A对于某一训练集D的信息增益g(D,A)定义为集合D的熵H(D)与特征A在给定条件下D的熵的(H|A)之差。
g(D,A)=H(D)-H(D|A)
简单来讲,每一个特征针对训练数据集的前后信息变化的影响是不一样的,信息增益越大,即代表这种影响越大,而影响越大,就表明该特征更加重要。
生成算法
决策树的生成算法最经典的就数 John Ross Quinlan 提出的 ID3 算法,这个算法的核心理论即源于上面提到的信息增益。
ID3 算法通过递归的方式建立决策树。建立时,从根节点开始,对节点计算每个独立特征的信息增益,选择信息增益最大的特征作为节点特征。接下来,对该特征施加判断条件,建立子节点。然后针对子节点再此使用信息增益进行判断,直到所有特征的信息增益很小或者没有特征时结束,这样就逐步建立一颗完整的决策树。
除了从信息增益演化而来的 ID3 算法,还有一种常见的算法叫 C4.5。C4.5 算法同样由 John Ross Quinlan 发明,但它使用了信息增益比来选择特征,这被看成是 ID3 算法的一种改进。
ID3 和 C4.5 算法简单高效,但是他俩均存在一个缺点,那就是用 “完美去造就了另一个不完美”。这两个算法从信息增益和信息增益比开始,对整个训练集进行的分类,拟合出来的模型针对该训练集的确是非常完美的。但是,这种完美就使得整体模型的复杂度较高,而对其他数据集的预测能力就降低了,也就是我们常说的过拟合而使得模型的泛化能力变弱。
当然,过拟合的问题也是可以解决的,那就是对决策树进行修剪。
决策树修剪
决策树的修剪,其实就是通过优化损失函数来去掉不必要的一些分类特征,降低模型的整体复杂度。修剪的方式,就是从树的叶节点出发,向上回缩,逐步判断。如果去掉某一特征后,整棵决策树所对应的损失函数更小,那就就将该特征及带有的分支剪掉。
最后
开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】
❤️ 谢谢支持,喜欢的话别忘了 关注、点赞哦。
❤️ 谢谢支持,喜欢的话别忘了 关注、点赞哦。
[外链图片转存中…(img-0kPUSPsE-1715523958699)]