准备测试数据集
test_data = torchvision.datasets.CIFAR10(root=“D:\Python_Project\pytorch/dataset2”, train=False, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
* `torchvision.datasets.CIFAR10`用于加载CIFAR10数据集,其中`root`参数指定了数据集的根目录,`train`参数设置为`False`表示加载测试数据集,`transform`参数将图像转换为张量格式。
* `DataLoader`用于将数据集分成小批次,以便于模型训练。在示例中,设置了每批包含64张图像,启用了数据的随机顺序洗牌,并设置`num_workers`为0以避免并行处理。
#### 三、测试数据集和数据展示
接下来,从CIFAR10数据集中获取一张图像和其对应的目标标签,以及使用TensorBoard进行数据可视化:
测试数据集中第一张图片及其target
img, target = test_data[0]
print(img.shape)
print(target)
writer = SummaryWriter(“logs”)
for epoch in range(2):
step =