PyTorch入门学习(五):torchvision中dataset的使用(以CIFAR10和MNIST为例)_torchvision

准备测试数据集

test_data = torchvision.datasets.CIFAR10(root=“D:\Python_Project\pytorch/dataset2”, train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)


* `torchvision.datasets.CIFAR10`用于加载CIFAR10数据集,其中`root`参数指定了数据集的根目录,`train`参数设置为`False`表示加载测试数据集,`transform`参数将图像转换为张量格式。
* `DataLoader`用于将数据集分成小批次,以便于模型训练。在示例中,设置了每批包含64张图像,启用了数据的随机顺序洗牌,并设置`num_workers`为0以避免并行处理。


#### 三、测试数据集和数据展示


接下来,从CIFAR10数据集中获取一张图像和其对应的目标标签,以及使用TensorBoard进行数据可视化:



测试数据集中第一张图片及其target

img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter(“logs”)
for epoch in range(2):
step =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值