深度学习广泛应用于图像识别、语音识别、自然语言处理等多个领域。模型通过大量数据的学习和训练,能够自动提取数据中的特征,并基于这些特征进行预测和分类。如何准确评估这些模型的性能,确保它们在实际应用中能够表现出色,就需要依赖于模型评估这一关键环节。********
在模型评估中,我们通常会使用各种评估指标来衡量模型的性能。分类问题常用准确率、精确率、召回率和F1分数等指标;回归问题则使用均方误差、平均绝对误差等指标。此外,ROC曲线和AUC值也能直观展示模型性能。
Evaluation
一、模型评估
模型评估(Evaluation)是什么?模型评估是指对训练完成的模型进行性能分析和测试的过程****,以确定模型在新数据上的表现如何。****
在模型评估中,我们通常会将数据集划分为训练集、验证集和测试集。
-
训练集(Training Set):用于模型学习的数据集,通过不断调整参数来最小化训练误差。
-
验证集(Validation Set):在训练过程中用于评估模型性能,以选择最佳参数和避免过拟合的数据集。
-
测试集(Test Set):模型训练完成后,用于评估模型泛化能力的独立数据集。
为什么需要模型评估?用于在训练阶段选择最佳参数、避免过拟合,并在训练完成后验证模型泛化能力。********
-
训练过程中的评估:在模型训练阶段,我们需要使用验证集来评估模型的性能,以便选择最佳的参数和架构,同时避免模型过拟合训练数据。
-
训练完成后的评估:在模型训练完成后,我们使用测试集来评估模型的泛化能力,即模型在未见过的数据上的表现。
二、评估指标
模型评估指标(Evaluation Metric)**是什么?******模型评估指标是用于量化模型在处理数据时表现的指标。它们帮助我们理解模型的性能、准确度和泛化能力,并且可以用于比较不同模型之间的优劣。
****分类任务的评估指标有哪些?****分类任务的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数(F1 Score)等。
1. 准确率(Accuracy)
-
定义:准确率是最直观也最常被提及的评估指标之一,它衡量的是模型预测正确的样本数占总样本数的比例。
-
计算公式:准确率 = (真正例 + 真负例) / (真正例 + 假正例 + 真负例 + 假负例)
2. 精确率(Precision)
-
定义:精确率是指模型预测为正例中真正是正例的比例,它反映了模型预测为正例的结果的可信度。
-
计算公式:精确率 = 真正例 / (真正例 + 假正例)
3. 召回率(Recall)
-
定义:召回率,也称为灵敏度(Sensitivity)或真正例率(True Positive Rate),是指模型在所有实际为正类的样本中,被正确预测为正类的样本的比例。它反映了模型捕获正类样本的能力。
-
计算公式:召回率 = 真正例 / (真正例 + 假负例)
4. F1分数(F1 Score)
-
定义:F1分数是精确率和召回率的调和平均数,旨在综合两者的表现,提供一个平衡指标。
-
计算公式:F1分数 = 2 * (精确率 * 召回率) / (精确率 + 召回率)
******ROC曲线和AUC值是什么?******ROC曲线是展示模型在不同阈值下真正例率与假正例率关系的曲线,越靠近左上角性能越好。AUC值是ROC曲线下方的面积,量化模型性能,取值0.5到1,越接近1性能越好。
**回归任务的评估指标有哪些?**回归问题中评估指标包括均方误差(Mean Squared Error, MSE)和平均绝对误差(Mean Absolute Error, MAE)等。
除了MSE和MAE之外,还有其他一些回归问题的评估指标,如均方根误差(Root Mean Squared Error, RMSE)、R²(决定系数)等。
-
均方误差(MSE):预测值与真实值之间差的平方的平均值。对异常值敏感,数值越小表示预测越准确。
-
平均绝对误差(MAE):预测值与真实值之间差的绝对值的平均值。对异常值不敏感度,数值越小表示预测越准确。
-
均方根误差(RMSE):是MSE的平方根,具有与原始数据相同的量纲,因此更容易解释和理解。
-
R²(决定系数):描述了模型所解释的方差占总方差的比例,越接近1表示模型的拟合效果越好。
为了帮助更多人(AI初学者、IT从业者)从零构建AI底层架构,培养Meta Learning能力;提升AI认知,拥抱智能时代。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓