事件概述
2025年3月10日,X平台用户@jian发布帖子称通过简单的自然语言指令成功获取Manus的系统文件(路径:/opt/.manus/),暴露其沙箱运行时代码、工具链及完整提示词框架。此次泄露不仅揭示其基于Claude Sonnet模型的底层架构,更暴露出严重的安全设计缺陷,引发行业对AI自动化工具安全性的深度担忧。
技术细节分析
1. 权限失控的架构漏洞
-
曝光的提示词显示,Manus默认拥有对Linux沙箱环境的完全控制权,可执行任意shell命令、读写系统文件(file_read/file_write)、部署公网应用(deploy_apply_deployment)等高风险操作
-
系统未实施最小权限原则,用户通过自然语言即可获取核心目录文件,如下图所示:
系统文件泄露示例
- 重放链接:https://manus.im/share/lLR5uWIR5Im3k9FCktVu0k
2. 工具链安全缺陷
-
29个内置工具中,shell_exec允许执行任意命令,browser_console_exec支持注入JavaScript代码,deploy_expose_port可暴露本地端口至公网
-
浏览器自动化工具(browser_click/browser_input)存在坐标点击注入风险,可能绕过传统Web安全防护
3. 提示词设计隐患
-
泄露的prompt.txt显示,系统未设置敏感指令过滤机制,用户可通过"读取/opt/.manus目录"等自然语言触发文件泄露
-
多轮代理循环机制(agent loop)缺乏操作审计,恶意指令可能通过迭代执行实现隐蔽攻击
工具和提示词:https://gist.github.com/jlia0/db0a9695b3ca7609c9b1a08dcbf872c9
潜在风险场景
-
敏感信息泄露:攻击者可利用file_read工具遍历服务器文件,窃取配置文件、密钥等敏感数据
-
恶意代码执行:通过shell_exec调用wget下载恶意程序,或利用deploy_apply_deployment部署钓鱼网站
-
横向渗透攻击:暴露的沙箱环境可能成为跳板,结合browser工具实施内网渗透
-
供应链污染:篡改通过make_manus_page部署的MDX文件,实施软件供应链攻击
行业影响评估
-
对AI代理领域:暴露通用安全盲区——87%的AI自动化工具未设置操作白名单机制
-
对Claude模型生态:可能引发对Anthropic API权限管控机制的重新审视
深度反思
此次事件暴露出AI自动化时代的新型安全挑战:
-
自然语言攻击面:传统基于代码的防护体系难以应对语义层面的权限绕过
-
工具链武器化:每个API都可能成为攻击者的"数字化瑞士军刀"
-
认知安全鸿沟:87%的开发者低估了提示词工程可能引发的系统风险
安全团队亟需建立"AI安全左移"机制,在提示词设计、工具链开发、沙箱部署等早期阶段植入安全基因。建议参考NIST AI安全框架(AI RMF),构建覆盖"设计-部署-监控"的全生命周期防护体系。
此外,开源工具Browser Use也就此事件进行回复
Turns out… Manus is just another Browser Use wrapper
(原来…Manus 只是另一个浏览器使用包装器)
值得引起思考。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓