Python+AI赋能:一键选股神器,智能股票分析的革命!

——Stock-Scanner全解析与实战指南


一、Stock-Scanner:开源股票分析的革命性工具

Stock-Scanner是一款基于Python开发的开源量化分析系统,集成了技术指标计算、全市场扫描、AI辅助决策三大核心功能。通过实时监控股票数据,它帮助投资者快速筛选潜力股并验证交易策略,尤其适合A股市场的技术派投资者。

核心优势
  1. 零门槛使用:提供Docker一键部署方案,支持群晖NAS、极空间等私有化部署,用户无需编程基础即可通过网页界面操作。

  2. 多模型支持:灵活对接Gemini、DeepSeek等大语言模型,AI生成的报告涵盖技术指标解读、行业对比及投资建议。

  3. 全市场覆盖:支持A股、港股、美股市场,可按价格区间、行业分类等维度生成分析报告。

  4. 数据可视化:内置K线图、趋势分析图表,直观展示股票历史走势与技术指标动态。


二、技术指标深度解析:科学选股的秘密武器

Stock-Scanner内置8大类技术指标,覆盖趋势判断、买卖信号识别等场景:

指标名称作用场景实战案例
MACD识别趋势转折点(金叉/死叉)当MACD线上穿信号线时提示买入机会
RSI相对强弱指数判断超买(>70)或超卖(<30)RSI低于30时结合成交量放大抓反弹
布林带监测价格波动区间股价触及下轨且缩量时提示底部信号
移动平均线(MA)判断短期/长期趋势5日均线上穿20日均线形成多头排列

案例演示:输入股票代码600795,系统实时计算其MACD、RSI等指标,生成综合评分(如55分)及AI建议(如“观望”),并标注关键价格变动(-0.24%)。


三、从部署到实战:手把手教你搭建系统

1. 环境准备

• 硬件需求:支持Docker的NAS或云服务器(推荐群晖DSM 7.0+)。
• 软件依赖:

# Docker部署命令(以DeepSeek API为例)
docker run -d --name stock-scanner \
  -p 8888:8888 \
  -e api_key="sk-xxx" \          # DeepSeek/Gemini API密钥
  -e api_url="https://api.deepseek.com/v1/" \
  -e api_model="deepseek-chat" \
  lanzhihong/stock-scanner:latest
2. 数据流架构
  1. 数据获取:
    • 实时行情:通过新浪接口easy quotation抓取当日开盘价、成交量等。
    • 历史数据:调用Tushare接口补全日线数据,支持按行业、市值等条件筛选。

  2. 指标计算引擎:

    # 技术指标计算示例(布林带)
    def calculate_bollinger_bands(df, window=20):
        df['MA20'] = df['close'].rolling(window).mean()
        df['STD20'] = df['close'].rolling(window).std()
        df['Upper Band'] = df['MA20'] + (df['STD20'] * 2)
        df['Lower Band'] = df['MA20'] - (df['STD20'] * 2)
        return df
    
  3. AI增强分析:
    • 输入:技术指标+行业基本面数据
    • 输出:自然语言报告(示例)

    "当前动态市盈率22.3,低于行业均值28.5;MACD柱状图连续3日扩大,建议关注回调买入机会。"


四、高阶应用场景

1. 量化策略回测

• 自定义策略:通过修改strategies/目录下的Python脚本,实现均线交叉、突破布林带上轨等策略回测。
• 绩效评估:系统自动生成夏普比率、最大回撤等指标,优化参数组合。

2. 机构级功能扩展

• 分布式计算:结合Apache Spark处理全市场历史数据(2000+股票10年数据可在1小时内完成扫描)。
• 实时预警:设置微信/邮件通知,当目标股票触发RSI超卖或成交量异动时立即提醒。

3. 教育与研究

• 可视化教学:内置Jupyter Notebook案例,展示MACD金叉策略在贵州茅台上的历史收益曲线。
• 数据导出:支持CSV、Excel格式导出,便于学术论文中的统计分析。


五、风险提示与优化方向

  1. 数据风险:依赖第三方接口(如新浪、Tushare)可能存在延迟,建议搭配本地化数据缓存。

  2. 策略局限性:技术指标易受市场情绪影响,需结合基本面数据交叉验证。

  3. 性能优化:
    • 使用Cython加速指标计算,处理速度提升5倍+
    • 采用Redis缓存热门股票数据,降低数据库查询压力


结语
Stock-Scanner将开源生态与AI技术深度融合,为个人投资者提供了媲美机构的分析工具。通过本文的解析,您已掌握从部署到策略开发的全流程技能。立即访问GitHub仓库(DR-lin-eng/stock-scanner),开启您的量化投资之旅!

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值