本文为您解密人工智能领域最赚钱的工作,助您在AI浪潮中抓住机遇,实现职业飞跃!
在这个AI迅猛发展的时代,如果你想在职场上有所作为,为什么不选择一份高薪的工作呢?别再满足于朝九晚五的平凡工作,而是去探索那些能充分发挥你潜力的岗位。让我们一起来看看2024年AI行业最吸金的6大职位,了解它们的平均薪资,为你的职业规划指明方向。
只要你有才华和抱负,世界就是你的舞台。如果下面这些职位描述打动了你,就开始行动吧!深入研究, 获取必要的资格认证。只要有明确的目标、积极的行动,再加上一点点运气,你的人生就可能在今年发生翻天覆地的变化。
2024年AI领域6大高薪职位
1. 提示工程师 (Prompt Engineer)
提示工程师主要负责为AI模型(尤其是自然语言处理模型)设计和优化提示。他们的工作重点是通过创建有效的输入提示来引导AI的响应,从而提高AI模型的性能和准确性。
这个角色需要对自然语言处理有深入的理解,能够创造性地构建提示,并且能够分析和迭代提示设计以达到预期效果。想要入行?你可以先从Youtube或B站视频学起,然后参加一些大学提供的免费课程,开始尝试各种提示技巧,不断提升自己的能力。
平均年薪: 12.7万美元 (约合91万人民币)
2. AI研究科学家(AI research scientist)
AI研究科学家致力于开发新的AI算法和模型,进行前沿研究。他们的工作领域包括深度学习、计算机视觉、自然语言处理和机器人技术等。
这个职位通常需要相关领域的博士学位和扎实的理论知识,可能不适合立即转行。但这不妨碍你去了解这个行业。你可以尝试在Linkedin上联系一些研究科学家,看看能否跟随他们工作一天。深入了解他们的工作世界,先从研究助理做起,逐步向上发展。
平均年薪: 13万美元 (约合93万人民币)
3. AI软件工程师(AI software engineer)
AI软件工程师负责将AI功能整合到软件应用中。他们开发的软件解决方案可能包括推荐系统、聊天机器人或自动化工具等AI组件。
这个岗位需要强大的编程能力和对AI技术的理解。如果你已经是一名软件工程师,转向AI领域可能是一个不错的选择。你可以在一个快速增长、需求旺盛的领域运用你现有的技能,让你的工作时间创造更高的价值。
平均年薪: 14.7万美元 (约合105万人民币)
4. AI产品经理(AI product manager)
AI产品经理负责监督AI产品的开发和部署。他们是技术团队和业务利益相关者之间的桥梁,确保AI解决方案能够满足市场需求和业务目标。
这个角色需要深入理解AI技术、市场趋势,并具备强大的项目管理能力。如果你已经是一名产品经理,不妨考虑朝这个方向发展。开始熟悉AI产品,尝试在现有工作中使用它们,或者在你当前的岗位上启动一个AI产品项目。这项工作的潜力是巨大的。
平均年薪: 14.8万美元 (约合106万人民币)
5. AI顾问
AI顾问主要帮助企业将人工智能和机器学习整合到其业务运营中,以提高效率、降低成本并推动收入增长。他们与工程师和其他专家密切合作,帮助客户发现新机会,制定战略以利用AI改进业务流程。
这是AI领域薪酬较高的职位之一。你可以加入一家AI咨询公司,或者自己创办一家。与潜在客户会面,了解他们的业务挑战,然后研究解决方案并就如何行动提供建议。这个角色要求你是一个渴望学习的人,积极主动,能够用简单的方式解释复杂的事物。
平均年薪: 顶级人才可达15.55万美元 (约合111万人民币)
6. AI创业公司创始人(AI startup founder)
**
**
AI创业公司创始人创立并领导一家专注于开发和商业化AI技术的公司。虽然他们可能不会立即获得现金收入,但通过股息、薪酬和公司估值,有潜力获得高额收益。
成功的AI创业公司可以吸引投资,并以高倍数被收购,通常是年收入的20倍或更多,具体取决于技术的创新性和市场影响。高调的退出可能为创始人带来丰厚的财务回报。
值得一提的是,你不必创办AI公司才能在AI职业生涯中大获成功。你也可以加入一家AI创业公司。顶级AI公司会在自己的网站上发布特定职位,一些薪酬和补偿方案甚至远超上述所有职位,特别是如果你早期加入并获得股权作为薪酬的一部分。
平均收入: 潜在收益可能相当可观,无论你是拥有公司还是早期加入。
结语
如果你正在考虑转行,并希望赚更多的钱,AI领域的职业可能是一个不错的选择。深入了解这些角色,找出你需要的技能,然后开始重新学习或提升自己。
AI浪潮才刚刚开始,还有很多时间让你踏入这个领域,开始规划你的未来,成为一个高收入者。为什么不去看看有什么可能性呢?
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。