谷歌 Gemini 2.5 Pro vs OpenAI GPT O1 Pro 深度研究能力全面对比

一、模型能力比较:推理、创造力、长文本与速度

推理与创造力:

两款模型都定位为“推理型”大型模型,具备强大的逻辑推理和分析能力。OpenAI 的 GPT O1 Pro 是 2024 年首次推出的深度推理模型,被称为“会在回答前思考”的 AI,专注于复杂问题的严谨推理。Gemini 2.5 Pro 则是谷歌最新的多模态推理模型,Google 在其发布中称其在推理相关基准上领先竞品,在数学 (AIME 2025) 获得86.7%的高分,在科学推理 (GPQA) 上得分84.0%。两者在创意生成任务(如写作、内容创作)上均表现优异,文案和故事创造力不相上下。但由于 GPT O1 Pro 专为深度思考设计,一些用户发现它在复杂问题上的分析严谨性更胜一筹,能够像顾问一样给出深度见解。

长文本处理:

Gemini 2.5 Pro 拥有业界最大的上下文窗口,可达 1,000,000 个 token(相当于75万字,大约前6本《哈利波特》长度)。这意味着它可以一次性处理超长文档、庞大代码库或多份资料,非常适合需要整合海量信息的研究场景。而 GPT O1 Pro 的上下文长度约为 200,000 个 token,虽已远超传统GPT-4的32k,但仍不到Gemini的五分之一。不过在实际应用中,有用户反馈 Gemini 2.5 Pro 未充分利用其超长上下文:“宣称有100万token上下文,但对话轮数稍多就开始遗忘指令、混淆前文”。相比之下,OpenAI的O1模型在上下文管理上表现更稳定,能牢记对话内容,不轻易丢失前文。

响应速度:

得益于谷歌强大的基础设施,Gemini 2.5 Pro 的响应被许多用户形容为非常迅速。在编码测试中有人指出它“思考快,生成速度比 O1 Pro 更快”。GPT O1 Pro 因为引入了链式思维等深度推理过程,在响应时会“先思考后作答”,所以首个输出token延迟较长。不少用户吐槽 O1 Pro 回复慢,需要等待模型层层推理完毕。总结而言,Gemini 2.5 Pro 偏向“快而准”的风格,而 GPT O1 Pro 则“深思熟虑但稍显缓慢”,在追求严谨性的同时牺牲了一定交互流畅度。

指令遵循与一致性:

两款模型在遵循用户指令、一致性方面也略有差异。Gemini 2.5 Pro 相比前代已有明显改进,但仍有用户反映它有时“有自己的主意”,对非常具体的编辑指令不够严格,例如要求“不改动其他部分”时仍会大幅修改代码。GPT O1 Pro 在这方面表现出色,更倾向于逐步、小幅地执行用户请求,避免发散。 一位开发者对比后选择 O1,原因是后者“修改更精细,不会擅自回滚到旧版本内容,基本按要求增量编辑”。这说明在长对话、多轮推理中,GPT O1 Pro 保持上下文一致性和指令遵循的能力更强,而 Gemini 2.5 Pro 偶尔会偏离用户意图,需要监督纠正。

二、深度研究场景表现:文献分析、知识整合与多轮研究

综合知识与文献分析:

在“Deep Research(深度研究)”场景下,需要模型从大量资料中找出关键信息、交叉验证并形成结构化报告。GPT O1 Pro 专为此设计,OpenAI 推出的“Deep Research”代理能够自动检索数百个网页和数据库,提取信息并生成引文齐全的详细报告。这种能力非常适合文献综述、政策分析等任务——用户只需提出研究问题,GPT O1 Pro 就会自主搜索并汇总多来源资料,5–30分钟产出结果。相比之下,谷歌 Gemini 当前并未提供类似的自主研究 Agent。使用 Gemini 2.5 Pro 做深度研究时,更多是由用户提供资料(如上传长文档、输入文本)然后让模型分析总结。这方面 Gemini 受益于超长上下文窗口,可一次投入整篇论文、书籍或大量笔记让其消化。例如,有测评显示 Gemini 在分析碳定价政策时,能提供机制的总体概述并综合主要数据,但对地区细节的覆盖不如竞争对手,而且引用不够完整一致。ChatGPT(使用 O1 模型的深度研究模式)则生成了结构清晰的分析,涵盖社会经济影响等细节,引用规范,但也遗漏了一些如“碳泄漏”等挑战点。总体而言,GPT O1 Pro 在深度研究任务中的结构化和严谨度略胜一筹,而 Gemini 2.5 Pro 虽然视野宏大但在细节引用和全面性上稍逊,需要人工补充核实。

多轮问答和复杂知识整合:

深度研究通常涉及多轮交互提问、不断细化问题。Gemini 2.5 Pro 和 GPT O1 Pro 都擅长这类连贯对话。不过在长达数十轮的讨论中,前述上下文管理差异会显现:GPT O1 Pro 凭借稳健的记忆更适合长链路推理,很少在对话中自相矛盾或忘记先前结论。Gemini 2.5 Pro 则要小心避免对话轮次过长以致前后不一致——一些用户建议将大型任务拆解,让 Gemini 分段完成,以保持每段对话的聚焦和准确。在知识整合方面,两者都能跨学科联系观点。但 O1 Pro 经训练更强调逐步思考,因而在需要严密推导、多步骤推理的问题上表现突出;Gemini 拥有最新(截至2025年初)的训练知识和谷歌庞大知识图谱的加持,在常识和新知方面占优。这意味着,涉及最新科研进展或动态信息的研究,Gemini 2.5 Pro 可能比训练截止更早的 O1 模型提供更实时准确的背景。不过,如果需要模型自己去网上找最新资料,GPT O1 Pro 的深度研究 Agent明显更为便捷高效。

代码分析与技术研究:

深度研究有时也涉及阅读和理解代码仓库、技术文档等。对于这类任务,Gemini 2.5 Pro 与 GPT O1 Pro 各有千秋。Gemini 2.5 Pro 本身在编码能力上非常强大:有开发者测评称其能一次输出上千行代码且理解复杂代码结构,速度上也快于 GPT O1 Pro。在多模态方面,Gemini 独具优势——它可以结合界面截图来分析应用UI或根据图片内容生成代码界面,这点远超纯文本模型。例如有人让模型看应用截图复现前端界面,Gemini 达到约80%的相似度,而OpenAI的GPT模型不到50%。这说明在代码+图片+文本综合分析(如阅读软件文档并看界面图)时,Gemini 更胜任。

另一方面,GPT O1 Pro 在代码演绎和调试上更加稳健:它善于阅读错误日志并逐步修复问题,遵循“最小改动”原则修改代码,不会一下子重写整段,因而更适合在现有代码基础上排错、优化。有Reddit用户总结了一个有效策略:用 Gemini 2.5 Pro 全局理解和规划代码修改方案,然后交由 GPT O3(基于O1的精简版)具体实现。这种组合利用了 Gemini 的宏观把控和 O1 系列的微观执行优势。在技术研究场景下,如果需要对源码、大型工程进行全面审阅,Gemini 可一次载入整个代码库(利用其百万token上下文)进行架构分析,再逐步交互;而 GPT O1 Pro 可以作为“代码顾问”,针对特定函数或错误提供深入见解和可靠修改建议。综上,Gemini 适合广度覆盖,GPT O1 Pro 更擅长深度精修,两者结合效果更佳。

多模态资料综合:

在深度研究中可能遇到多种形式的数据,例如图表、音频访谈、视频资料等。Gemini 2.5 Pro 的一大亮点就是原生的多模态支持。它能够接受文本、图像,甚至音频和视频输入,直接在单一模型中理解这些不同模态的信息。对于需要分析一份带图表的PDF报告、听写音频内容或者浏览视频片段然后总结的任务,Gemini 2.5 Pro 能一次性完成理解和整合。而 GPT O1 Pro 主要面向文本,目前不支持语音和视频输入。这意味着在学术论文图表解读、视觉资料分析等方面,Gemini 2.5 Pro 更加胜任。

举例来说,研究人员可以让 Gemini 直接看论文中的复杂图表并文字解说含义,而 GPT O1 Pro 则做不到这一点,需要借助额外工具将图像转成描述供其分析。不过,在只有文本资料的纯文献综述场景下,GPT O1 Pro 丰富的推理链和分析深度仍是优势。另外值得注意,OpenAI 的 ChatGPT 平台也在探索多模态,如附加文件上传功能(GPT-4 已支持上传PDF让模型阅读),但 GPT O1 Pro 本身没有图像/音频理解能力,和 Gemini 的“全模态一体”有明显差距。因此,对于需要跨文本和非文本资料的深度研究,Gemini 2.5 Pro 提供了前所未有的便利。

三、成本与性价比:订阅费用与功能价值

订阅费用:

谷歌 Gemini 2.5 Pro 的定价远低于 GPT O1 Pro。在消费者层面,Gemini 2.5 Pro 可通过 Gemini Advanced 应用订阅,每月收费20美元。值得一提的是,谷歌还在其 AI Studio 平台上提供了 Gemini 2.5 Pro 的免费试用(预览模式),开发者可以有限制地免费体验这一最先进模型。也就是说,普通用户只需付出ChatGPT Plus相当的价格($20)即可使用 Gemini 2.5 Pro,而愿意接受一定限额的话甚至无需付费就能测试模型性能。

相较之下,OpenAI 将 GPT O1 Pro 定位在高端专业市场:截至2025年3月,只有订阅 ChatGPT Pro 的用户(每月收费USD )才能使用模型。是面向企业和深度用户的新高级套餐,价格是普通(20/月)的十倍。 这一级别除了模型本身,还包含如“深度研究”Agent等附加功能,但目前每月仅100次深度研究查询额度。因此在价格上,Gemini Pro 以1/10的成本提供了与 O1 Pro 相近甚至更丰富的模型能力,性价比极其突出。很多开发者对此表示惊讶,称“一个免费的(或廉价的)模型竟能媲美需要200美元订阅的对手”。

使用成本与限制:

除订阅费外,使用大型模型还涉及API计费和数据限制。OpenAI 已在2025年3月开放 GPT O1 Pro 的API,价格非常昂贵——输入每百万 tokens 收费 ,输出每百万收费600。相比之下,GPT-4 的标准接口费用输入每百万、输出60,这意味着 O1 Pro API 价格是 GPT-4 的5~10倍之高。深度推理模型由于会进行大量“思考”步骤,实际消耗的token也更多,所以调用一次 O1 Pro 可能花费数倍于普通模型的费用。谷歌尚未公布 Gemini 2.5 Pro API具体价格(预计随 Vertex AI 上线公布),但可以预期不会高于OpenAI。

在功能上,OpenAI Pro 用户享有专有的“深度研究”模式,而 Plus($20)用户直到近期才开始逐步解锁该功能。谷歌方面,免费和付费用户使用 Gemini 2.5 Pro 模型本身能力无差别,只是免费预览有流量/频次限制及可能的数据用例限制。因此在成本与限制上,谷歌的策略更亲民开放,而 OpenAI O1 Pro 走高价高门槛路线,更适合预算充足、对顶级性能有强需求的专业用户或企业。

性价比评估:

从投入产出比来看,Gemini 2.5 Pro 显然优势巨大:低成本甚至免费,却可以使用到当前最强的多模态大模型之一。它的功能几乎涵盖了深度研究所需的方方面面(长上下文、推理、图像音频支持等),对个人研究者和小型团队而言价值惊人。GPT O1 Pro 则胜在可靠性和独家功能上。付费高额订阅的用户,除了获得模型本身的服务,也避免了模型训练数据对话被用于训练(OpenAI对Pro/企业用户承诺更严格的隐私保护)。

另外,O1 Pro 的“深度研究”Agent可以大幅节省用户时间,让 AI 自动完成繁琐的查找和引用工作 ——对于金融分析师、政策顾问等高薪专业人士来说,节省的人力成本可能远超每月200美元的订阅费。这也是OpenAI定价策略的逻辑:将时间换算为价值。因此,性价比取决于你的立场:一般用户显然认为 Gemini 2.5 Pro “物超所值”,而对于那些每天都要进行深入调研、愿意为效率买单的专业人士,GPT O1 Pro 可能也“值这个价”。

下表总结了两款模型在成本和功能方面的差异:

对比维度Google Gemini 2.5 ProOpenAI GPT O1 Pro

订阅费用

$20/月(Gemini Advanced);免费开发者预览可用

$200/月(ChatGPT Pro)(Plus用户未来将有限开放)

上下文长度

1,000,000 tokens,上下文极长

200,000 tokens,上下文很长但不及Gemini

多模态支持

原生支持文本、图像、音频、视频

仅支持文本(不支持语音、视频输入)

自动研究代理

无专用Agent,需用户手动提供或搜索资料

Deep Research智能代理,可自主搜索并整理资料

代码编辑风格

倾向整体重写,偶尔不遵循限定修改范围

倾向逐步编辑,严格按指令局部修改

响应性能

极快的生成速度,低延迟输出

深度思考导致延迟偏高

用户数据隐私

免费版可能用于模型改进;付费API可选择不记录数据

承诺不将Pro级用户数据用于训练(企业级隐私保障)

适合用户群

预算有限的独立研究者、需多模态分析的用户、大型上下文整合任务

预算充足的专业人士、企业团队,强调结果可靠性和省时省力

(注:上表中的信息基于2025年3月公开资料和用户反馈。)

四、最新用户评价与趋势(2025年3月)

过去一个月中,英文社区对 Gemini 2.5 Pro 和 GPT O1 Pro 的讨论非常热烈,体现了各自的优缺点和应用趋势:

  • 开发者社区(Reddit):

    在开发者圈,很多人对 Gemini 2.5 Pro 的编码能力赞誉有加。一位网友在LiveBench基准测试中发现它登顶多项指标,甚至发帖称“Gemini 2.5 Pro 是当前世界上最强的编程 AI”。不少程序员亲测后表示震惊:“Gemini 2.5 提供了免费的顶级模型,我再也不想回到每月200美元的 O1 Pro了”。他们尤其喜欢Gemini处理整段代码库和跨文件理解的能力。然而,也有资深用户发表长文详述了 Gemini 在实际编码任务中的不足,例如版本跟踪差、改动过度、不善处理错误日志等,最终他选择回到 OpenAI 的 o1/o3 模型以获得更稳定的体验。这篇帖子引发大量讨论,一些人赞同Gemini目前在细粒度代码编辑上不如OpenAI模型,也有人指出通过优化提示和分步骤让Gemini编程,可以部分克服这些问题。总体来看,Reddit上观点呈现两极:一派认为Gemini 2.5 Pro性价比无敌、适合作为“万能助手”,另一派则更信任GPT O1 Pro在棘手问题上的可靠性,把它当作“最后的保险”。

  • 社交媒体(Twitter/X):

    在推特等社媒上,科技博主和业内人士也在分享对两模型的看法。博主 Dr. John Seach 详细测评了 Gemini 2.5 Pro 的编程表现,他的结论是:优点在于一次生成2000+行代码毫无压力,理解复杂代码上下文也很到位,关键是生成速度明显快于 GPT O1 Pro;缺点是有时需要反复提示才能让代码完全正确,一些特殊格式转换任务上还不如 O1 Pro。例如,他提到让模型解析一种特殊音频格式并生成声音时,Gemini直接回答不支持这种格式,而 GPT O1 Pro 却能轻松给出解决方案。另一位用户 Jon Tucker 则分享了使用 GPT O1 Pro 做深度项目的经历,称其“第一次用 O1 Pro 做超深入研究项目,效果震撼,感觉就像请了一个麦肯锡级别的顾问为我工作”。这种评价反映了专业用户对 O1 Pro 在复杂分析场景下专业水准的认可。同样地,一些工程师在 X 上讨论模型时,提到 GPT O1 Pro 的代价问题:Sunny Madra就吐槽说类似O1的推理模型调用tokens巨大,当前业界对算力/成本估计可能偏乐观了好几个数量级——这种高成本也让部分用户对 O1 Pro “又爱又恨”。

  • 专业媒体与博主测评:

    三月里,多家科技媒体对两款模型进行了对比评测和报道。TechRepublic 等媒体用基准测试数据佐证了 Gemini 2.5 Pro 在数学、科学和编码任务上全面领先或持平其它模型的结论。另一篇 TechTalks 博客指出,Gemini 2.5 Pro 是谷歌奋起直追OpenAI的标志,其强项在于超长上下文和多模态,并援引独立评测者的话说它在Web开发任务上已追平Anthropic最新的Claude 3.5模型,较之前代有“巨大飞跃”。另一方面,OpenAI GPT O1 Pro 因“深度研究”功能也受到了主流媒体关注。WIRED 和 ModernScience 等刊文分析了 Deep Research Agent 对办公族的意义,虽肯定其效率,但也提醒用户不要迷信AI,会有遗漏和谬误,毕竟目前 O1 Pro 输出的报告有时仍存在细节错误或编造引用的问题。值得一提的是,OpenAI 在3月末宣布将 Deep Research 功能很快下放给免费用户试用——此举或是回应竞争压力,也显示出深度研究型AI工具的流行趋势正在形成。

  • YouTube测评与社区讨论:

    在YouTube上,也可以看到大量关于 Gemini 2.5 Pro 的演示和对比视频。很多Up主把它与ChatGPT的不同模式进行对照,有的专注于多模态能力展示,如演示 Gemini 如何理解一张复杂科学示意图并给出分析;有的则比较其在编程上的表现。有开发者在视频中给 Gemini 2.5 和 GPT O1 同时布置前端开发任务,结果发现 Gemini 生成的网页布局更贴近设计要求,而 O1 模型花费更长时间且输出略显刻板。这一结果也反映在一些开发者博客上:Austin Starks 在Medium发文比较了多款顶尖模型做前端页面生成,Claude 3.7 Sonnet 在代码优雅度上拔得头筹,OpenAI O1-Pro 因“速度慢、成本高、代码不好看”反而垫底,而 Gemini 2.5 Pro 表现出色且对用户免费开放。总的来看,视频和博客社区对 Gemini 2.5 Pro 的评价关键词是“跨模态、快、高性价比”,对 GPT O1 Pro 则是“稳健、准专业级、太昂贵”。很多创作者也预测,未来研究型AI的主流可能由这些具推理能力的新模型主导,OpenAI和谷歌的此类产品将会持续竞争迭代。

五、各自优势与不足:哪种模型适合你?

结合以上维度分析和社区反馈,我们可以总结出 Google Gemini 2.5 Pro 和 OpenAI GPT O1 Pro 在深度研究任务中的主要优势和不足,并给出适用人群建议:

  • Google Gemini 2.5 Pro 优势:

    超长的上下文让它可以吃下海量资料而不需切分;原生多模态支持使其能一次性处理文本、图像、音频等各种信息源;响应速度快,交互体验流畅;在数学、科学问答、代码生成等基准上达到业界顶尖水平;订阅成本远低于竞品甚至提供免费使用渠道,性价比极高。这些特点使得 Gemini 2.5 Pro 非常适合独立研究者、学生和中小型团队:例如需要阅读分析一堆论文、整理跨学科资料或者做课程项目,Gemini 几乎是零成本的全能工具。此外,如果你的研究涉及大量图片/视频(如社科研究需要分析新闻视频,生物研究要看显微照片),Gemini 的多模态能力将给你带来独特的优势。

  • Google Gemini 2.5 Pro 不足:

    由于“深度思考”模式默认开启,某些情况下 Gemini 的答案风格可能过于严谨复杂,不如直觉型模型简洁。这也导致它偶尔会擅自发挥,不完全按用户限定来行动(尤其在代码编辑等需要精细控制的任务中,曾引发用户抱怨)。另外,Gemini 2.5 Pro 虽训练数据新,但缺少联网实时搜索能力,如果问题超出训练范围(如最新事件或非常偏门的数据),它可能给不出令人满意的答案,需用户手动提供额外信息。再者,免费使用Gemini时需考虑数据隐私:谷歌免费版会收集交互数据用于改进模型(付费可关闭),对于敏感研究内容,用户需权衡隐私风险。

  • OpenAI GPT O1 Pro 优势:

    作为OpenAI的旗舰推理模型,O1 Pro 在复杂推理、严谨分析、细节准确性上有口皆碑。它在诸如MMLU、人文社科等知识测试中成绩突出(独立评估测得MMLU达92.3%),善于抓住问题细节逐一攻破。O1 Pro 对指令的遵循度极高,特别适合需要精确执行用户要求的研究任务(如只改某段文本、按照指定格式输出等)。它的深度研究Agent更是独一无二的利器:能自动帮你搜集整理互联网信息并生成引注完备的报告,大大节约调研时间。对于金融、政策、法律等领域的专业人士来说,GPT O1 Pro 就像一个随叫随到的资深助理,可以在短时间内提供接近专家水准的见解。如果你的工作/研究对准确性要求极高且经费充足,GPT O1 Pro 是目前市场上经过验证的可靠选择——许多用户把它比作“AI顾问”或“智囊”,这是对其能力的高度肯定。

  • OpenAI GPT O1 Pro 不足:

    首当其冲的是高昂的价格和使用门槛。每月200美元的订阅费令个人用户和小团队难以承受,再加上目前每月查询次数有限制,对于需要频繁使用的人而言性价比不佳(好消息是Plus和免费用户未来可能获得部分深度研究功能试用)。另一个不足是缺乏多模态支持——在需要处理图像/音频的研究场景下,O1 Pro 势必需要借助其他工具,无法像Gemini一样一站式完成。响应速度慢也影响了一些用户体验:O1模型经常为了确保准确而在内部反复推理,这虽然提高了可信度,但用户等待时间变长,在交互对话中不如Gemini那样干脆利落。最后,尽管OpenAI一再优化,GPT O1 Pro 仍有可能出现“幻觉”或疏漏——尤其是当资料非常新或者问题超出其训练知识范围时,它可能给出看似有依据但实际错误的内容。不过相对普通GPT模型,O1这类推理模型的错误率已经显著降低。

六、总结建议

如果您是在校学生、独立研究者或开发者,预算有限又希望获取尽可能强大的研究助力,谷歌 Gemini 2.5 Pro无疑是首选。它以低廉的成本提供了广博的知识、超强的多模态理解和大幅提升的推理深度,能胜任从学术报告撰写、资料综述到编程debug等各类任务。您可能需要对它偶尔的不守规矩多加留意,但瑕不掩瑜,Gemini 正在以平民化的方式将AI研究助手带给人人。

而如果您是专业科研人员、金融分析师或企业顾问,对结果的准确性和全面性要求极高,并且愿意为效率提升付出额外成本,那么 OpenAI GPT O1 Pro 会更符合您的需求。它在关键细节上的可靠表现和自动化的深度检索能力,可以在关键决策和高难度课题中为您提供更有保障的支持。在需要绝对严谨的场合,GPT O1 Pro 相当于请来了一位勤勉不知疲倦的资深研究助理。

当然,很多高阶用户也选择将两者结合使用,取长补短。例如前述的开发者社区建议:“用 Gemini 做宏观规划,再用 OpenAI 模型执行具体细节”。在深度研究的实践中,这种多模型协作渐成趋势:您可以先利用 Gemini 迅速收集广泛信息、理解全局,接着用 GPT O1 Pro 对关键部分深挖细究、检查推理链的严密性。总之,Gemini 2.5 Pro 和 GPT O1 Pro 各擅胜场,哪个更适合取决于您的任务需求和预算。希望本次对比能帮助您做出明智选择,在未来的深度研究工作中如虎添翼。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值