一文讲透如何写专业的AI大模型Prompt!

Prompt的作用是什么?


Prompt是调用大语言模型能力的方式,在对话的过程中指导AI模型产生特定的输出

基于上面Prompt的作用,有个重要的动作是「指导」。这和编程不一样,编程的动作是「编排」,那么就要求使用者有逻辑性即可入门了。

但Prompt入门不仅要求有逻辑性,还要求使用者必须要有抽象问题的能力,换句话说:如果不能通过本质去思考问题,那又如何简洁高效的「指导」模型使用什么能力呢?

例子:天气预报

假设有个需求是输出广州市未来10天的天气预报,并展示其每天应对天气的准备工作。

如果是未入门的Prompter,一定会把自己的需求原封不动的说给AI听,并期待AI给出理想的结果,一些Prompter甚至会知道加一些假定前缀。

假如你是一个资深气象专家,请告诉我广州市未来10天的天气预报,并展示每天应对天气的准备工作。

Kimi的答复如下:

根据我搜索到的信息,广州市未来10天的天气预报如下,并附上每天应对天气的准备工作:第1天(05-24):天气:多云到阴天,有分散阵雨局部大雨气温:23~27℃风向:轻微的偏东风准备工作:携带雨伞,穿着适合多云天气的衣物,早晚可能较凉,可带一件薄外套。第2天(05-25):天气:预计多雷雨,局部雨势大气温:未提供具体气温数据准备工作:注意防雷,避免在雷雨时外出,准备防水鞋和雨衣。第3天(05-26):天气:多雷雨,局部雨势大气温:未提供具体气温数据准备工作:同第2天,加强防雨措施,关注气象预警。第4-10天(05-2706-02):天气:搜索结果中未提供未来10天的详细天气数据,但根据广州市气象台的预警信息,预计未来几天会有雷雨天气。准备工作:持续关注当地气象台发布的最新天气预报和预警信息,准备相应的防雨和防雷措施。通用建议:防雨:由于预报显示未来几天多雷雨,建议每天出门时都携带雨具。防雷:雷雨天气时,避免在开阔地带停留,远离高大树木和金属物体。防晒:尽管有雨,但晴朗时紫外线强度可能较大,外出时涂抹防晒霜,戴帽子和太阳镜。室内活动:遇到恶劣天气,尽量选择室内活动,避免不必要的外出。关注气象预警:随时关注广州市气象台的官方网站或相关气象App,获取最新的天气信息和预警。请注意,天气情况可能会有变化,建议每天出门前再次检查最新的天气预报。

Gpt3.5-turbo的答复如下:

根据最新的气象数据,广州市未来10天的天气预报如下:第一天:晴,温度28°C,湿度60%。准备工作:穿着轻便的衣物,如T恤和短裤,并携带防晒霜和墨镜。第二天:多云,有时阵雨,温度26°C,湿度65%。准备工作:携带雨伞和雨衣,以防意外淋湿。第三天:阵雨,温度25°C,湿度70%。准备工作:穿着防水的鞋子和衣物,携带雨伞和防水袋。第四天:阴,温度24°C,湿度75%。准备工作:穿着保暖的衣物,如长袖衬衫和外套,并携带雨伞,以防万一。第五天:多云,温度27°C,湿度65%。准备工作:穿着轻便的衣服,准备户外活动或是外出游玩。第六天:晴,温度29°C,湿度60%。准备工作:携带防晒霜和墨镜,以确保皮肤不受阳光伤害。第七天:多云,有时阵雨,温度26°C,湿度70%。准备工作:携带雨伞和雨衣,穿着透气的鞋子和衣物。第八天:阵雨,温度25°C,湿度75%。准备工作:穿着防水的衣物和鞋子,带上雨伞和防水袋。第九天:阴,温度24°C,湿度80%。准备工作:穿着保暖的衣物,携带雨伞和外套。第十天:多云,温度28°C,湿度65%。准备工作:穿着轻便的衣服,准备户外活动或外出游玩。以上是未来10天广州市的天气预报和相应的准备工作,希望对您有所帮助。如有变化,请及时关注气象预警信息。

通义千问的答复如下:

根据最新的气象信息,以下是广州市未来10天(从2024524日至202462日)的天气预报,以及针对每一天天气的准备工作建议:2024-05-24(今天):天气:大雨,湿度96%,体感温度27.0℃,西北风1级。准备工作:携带雨具,穿防水鞋,注意防滑,减少不必要的外出,开车减速慢行。2024-05-25:天气:夜间中雨,白天雷阵雨,湿度85%,最低温度24.0℃,最高温度30.0℃,北风1级。准备工作:继续携带雨具,关注雷电预警,避免户外高空作业,确保家中排水系统畅通。2024-05-26:天气:夜间雷阵雨,白天中雨,湿度80%,最低温度25.0℃,最高温度30.0℃,南风转北风,风力分别为3级和1级。准备工作:留意天气变化,随身带伞,注意南风转北风可能带来的气温波动,适当调整着装。2024-05-27:天气:大到暴雨,湿度86%,最低温度22.0℃,最高温度28.0℃,北风3级。准备工作:尽量避免外出,确保家中门窗紧闭以防雨水渗入,检查排水设施以防积水。2024-05-28:天气:夜间阵雨,白天大到暴雨,湿度84%,最低温度21.0℃,最高温度26.0℃,北风转东北风,风力1级转3级。准备工作:关注雨势变化,保持通讯设备电量充足,准备应急物资,如非必要避免驾车出行。2024-05-29:天气:夜间多云,白天阵雨,湿度84%,最低温度21.0℃,最高温度27.0℃,北风1级。准备工作:随身携带轻便雨具,利用多云时段进行必要的户外活动,注意个人物品防潮。2024-05-30(信息未直接给出,基于趋势推测):天气:可能持续阵雨或雷阵雨,注意关注即时预报。准备工作:维持日常防雨措施,关注天气预警,合理安排室内活动。2024-05-31(推测):天气:预计有雨,具体强度需查看最新预报。准备工作:依据天气预报调整计划,确保家中食物和必需品充足。2024-06-01(推测):天气:预计持续关注天气变化。准备工作:继续关注天气预报,做好长期阴雨天气的心理准备和生活安排。2024-06-02(推测):天气:依据近期天气模式,可能仍有降雨概率。准备工作:保持对天气的关注,做好个人防护,利用晴好间隙晾晒衣物。请注意,以上建议基于当前的天气预报信息,实际天气可能会有所变化,建议持续关注当地气象部门发布的最新预报,以便做出适时调整。

看起来是输出了我们理想的答案,对于这个动作如果是给个人提供建议来说的话,回答的很不错。

但这就完了吗?

如果我们尝试多几次询问,我们会发现他的答案内容和格式各不相同。如果提问内容有新的需求,那么返回的格式是否又不一致了呢?

输出的控制是关键!


因为大模型本身实际上并不包含任何的常识、公理等我们生活中约定俗成的信息,对于大模型来说,所有的返回内容都是它对数据学习后,形成词联概率的组装结果。

那么这个时候,我们就需要拟定一套完整的协议,告诉大模型:上下文是什么,目标数据有什么特性,按照什么样的方式(给个简单示例),生成什么结构的内容(给个简单示例) 返回。

这样有了一套完整协议,大模型的返回内容更具有可控性,同时大模型好像也更“理解”我们想表达什么意思了。而根据不同的细分场景,使用者需要根据真实意图进行抽象,形成不同场景下的协议。

如何编写协议?

从各类书写规范来看建议使用 markdown 中文教程 👉 [Markdown 官方教程]的书写方法,它更高效,能包含更多的信息格式,用于帮助举例说明。

如果是重要或特殊标记的内容(比如上下文中会用到的变量),可以使用[] 符号包裹,并将其内容大写。

还是例子:天气预报

我在这里使用一个通用的协议来去控制输出。

假如你是一个资深气象专家,请告诉我广州市未来10天的天气预报,并展示每天应对天气的准备工作。

# 上下文我想知道广州市未来10天的天气预报# 数据特性请从在线的气象网站中获取最新的天气数据# 变量定义[Date]:日期时间,格式为:YYYY-MM-DD,例如:2024-05-28[MaxTemp]:最高气温,单位为:摄氏度,例如:28摄氏度[MinTemp]:最低气温,单位为:摄氏度,例如:28摄氏度[Wet]:空气湿度,单位为:%,例如:60%[RainProb]:降雨概率,单位为:%,例如:30%[WindLevl]:风力等级,单位为:级,例如:2[WindDirt]:风力方向,单位为:向,例如:东北向[Warning]:天气提醒,根据气温、湿度、降雨概率维度给出合理提醒,例如:今日降雨概率较大,请出门备伞/雨衣# 返回格式请遍历每一天的气候数据,并严格按照如下格式返回表格内容,不要输出不相关的内容。| 日期 | 最高气温 | 最低气温 | 空气湿度 | 降雨概率 | 风力等级 | 风力方向 | 天气提醒 || ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- ||[Date]|[MaxTemp]|[MinTemp]|[Wet]|[RainProb]|[WindLevl]|[WindDirt]|[Warning]|例如:| 日期 | 最高气温 | 最低气温 | 空气湿度 | 降雨概率 | 风力等级 | 风力方向 | 天气提醒 || ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- ||2024-05-28|38摄氏度|28摄氏度|61%|60%|1|北向|今日降雨概率较大,请出门备伞/雨衣|

Kimi的答复如下:

根据搜索结果,广州市未来10天的天气预报如下:日期 最高气温 最低气温 空气湿度 降雨概率 风力等级 风力方向 天气提醒2024-05-28 33°C 24°C 71% 70% - 东北偏东 雷暴,可能有局部强降雨,请备好雨具2024-05-29 29°C 24°C 70% - - 东 阴天,注意防晒2024-05-30 30°C 25°C 77% 50% - 东北偏东 阴,局部阵雨2024-05-31 30°C 25°C 84% 90% - 东北偏东 雷暴,中雨有雷,注意防雷2024-06-01 29°C 25°C 86% 80% - 东北偏北 雷暴,中雨有雷2024-06-02 30°C 24°C 81% 80% - 东北偏东 雷暴,注意防雷2024-06-03 29°C 24°C 82% 70% - 东 雷暴,小雨2024-06-04 27°C 23°C 82% 70% - 东 中雨,注意携带雨具2024-06-05 27°C 22°C - 60% - 东北 中雨,阵雨2024-06-06 28°C 23°C 75% 60% - 东北 阵雨,注意防晒和携带雨具2024-06-07 29°C 24°C 72% 40% - 东北 阵雨,注意防晒2024-06-08 30°C 24°C 73% 40% - 东北 阵雨,注意防晒2024-06-09 30°C 24°C 73% 50% - 东北 阵雨,注意防晒和携带雨具2024-06-10 29°C 24°C 77% 60% - 东北 雷暴,阵雨,注意防雷请注意,以上数据是根据搜索结果提供的,具体的天气情况可能会有所变化,建议每天出门前再次检查最新的天气预报。

Gpt3.5-turbo的答复如下:

很抱歉,无法为您提供广州市未来10天的天气预报的实时数据。这需要通过编程来实现,而且当前的平台没有提供与在线气象网站进行数据交互的功能。建议您直接访问专业的气象网站或使用相关的气象应用程序来获取最新的天气预报信息。

通义千问的答复如下:

根据您的要求,以下是广州市未来10天的天气预报数据:日期 最高气温 最低气温 空气湿度 降雨概率 风力等级 风力方向 天气提醒2024-05-28 30.024.083% - 3级 东风 今天有雨,有些热了,记得多喝水2024-05-29 27.024.082% - 1级 北风 夜间雷阵雨,注意防雷安全2024-05-30 28.025.085% - 1级 北风 中雨持续,外出请带伞2024-05-31 29.023.085% - 1级 北风 中到大雨,避免不必要的外出2024-06-01 28.023.086% - 1级 北风 中到大雨,注意积水路段2024-06-02 28.023.083% - 1级 北风 中雨转中到大雨,出行请规划安全路线后续 - - - - - - 数据不足,无法提供完整10天预报,请查阅最新预报请注意,部分天气数据如降雨概率未在原始信息中明确给出,且从现有信息来看,特定日期的详细降雨概率未直接提供。此外,天气提醒根据描述性信息进行了简化概括。建议关注当地气象部门的实时更新以获取最准确的天气预报信息。

写在最后

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值