“ 大模型的本质就是一段有输入和输出,并能使用某种算法达到某种目的得计算机程序 ”
在刚开始接触大模型时,根本不明白大模型是个什么玩意,看着别人给出的定义一脸懵逼。
不论是业内还是网上的文章,对大模型的普遍定义都是拥有巨大参数量和复杂计算的机器学习模型/深度学习模型。
从定义中能够看出哪些东西?
巨大参数量,复杂计算,机器/深度学习模型。
说句实话,对大部分人来说看了这玩意有什么用,有谁能用自己的话说明白什么是大模型。
所以,对刚开始学习大模型技术的人来说,即使告诉他大模型的作用,概念和实现原理,但对他来说还是七窍通了六窍,就剩下一窍不通。
为什么会出现这种情况?
原因就在于概念和定义是别人在事物的基础之上,加上自己的理解所下的定义;但你又不理解,因此看了别人的定义也不会真正明白;这就像道理大家都懂,但真正能理解道理的却没几个。
基于应用理解大模型
在刚开始学习大模型的时候,作者一直在尝试理解大模型的定义,原理,以及训练和微调的步骤和流程。
然后由于大模型需要庞大的算力支持,而自己又没有那么多钱来支撑自己购买GPU等算力工具;因此就觉得大模型好牛逼,好复杂。然后就觉得搞大模型好难啊,没有足够的资金和技术根本玩不转。
但经过这段时间从事大模型的应用开发,并随着时间的推移,遇到的事情也越来越多;然后对大模型的理解也更加的深入,这时才发现大模型原来没有想象中的那么复杂;当然也没想象中的那么简单。
首先,我们不要过度神话大模型,大模型并不是神仙,它还做不到无所不能;其次,大模型是一种技术,本质上是一个工具,其表现的是一种能力。
比如说,文字,视频,图片生成能力,也就是AIGC的能力,有些模型你只需要输入文字,它就可以根据你的要求生成一张图片或视频。
既然大模型是人工制造的智能体,既然人都无法做到无所不能;因此,大模型就更不可能做到无所不能了,所以不同的大模型就会像不同的人一样,擅长不同的领域。
比如有些大模型擅长内容生成,比如有些擅长生成古风的图片,有些擅长生成二次元图片等;而有些模型可能更擅长推理规划,还有的模型擅长回答问题等。
原因是什么?
原因就是不同的大模型采用不同的技术和训练数据,直接导致它们擅长不同的领域;就像人一样,不同的人选择不同的专业,擅长的东西也不一样。
ok现在我们知道了不同大模型拥有不同的能力,那怎么理解大模型的训练和微调? 大模型为什么需要训练?
严格来说大模型的训练叫做学习,大模型的实现原理就是模仿人类的学习能力,让机器能够通过学习的方式获得智能——这个过程叫做机器学习,而随着技术的发展,技术人员开始通过模仿人类的大脑神经元的方式来模拟人类的学习过程——这个过程叫做深度学习。
而关于学习,学习的方式多种多样,比如说去学校学习,自己自学等;大模型也是如此。
所谓的监督学习就是告诉大模型一些问题,然后再给它一份答案,让它自己去观察和总结其中的原理;而无监督学习就是直接扔给大模型一堆问题,然后让它自己看,自己学,然后去寻找其中的一些规律,然后下次再碰到类似的问题就知道怎么做了。
这就是大模型训练的过程,也是学习的过程;只不过这些过程都需要人类帮助机器去实现,而且为了实现这些过程还需要增加很多辅助性的工程,比如损失计算,通过损失函数来让大模型知道自己的学习效果。
ok ,那现在再来理解什么是大模型,以及大模型的参数?
所谓的大模型,其实就是一个计算机程序,然后这个程序能够读取数据,并使用某种方式来对这些数据进行分析,然后总结出相关的规律,并记录下来。
而其中分析数据的方式叫做算法,记录下来的规律叫做参数;而由于要在复杂的数据环境中找到规律,因此要记录很多规律点,所以才导致大模型拥有庞大的系统参数。
这也是为什么大模型被称为巨大参数量的机器学习模型,从本质上来说它只是一个机器学习模型或者说是深度学习模型;只不过它要学习复杂的数据,因此需要大量的参数进行标识,才导致它成为了一个巨大参数量的机器学习模型。
现在明白了什么是大模型,以及大模型的参数,那么如果让你实现一个模型应该怎么做?
首先,你要明白这个模型是干什么的,也就是说它应该具备哪些能力? 比如说画画的能力。
其次,既然知道了模型应该具备画画的能力,那怎么才能让它学会画画呢?
这时就需要去学习和了解计算机视觉相关的知识了,知道图像的原理,怎么生成,怎么保存,然后用那种算法让模型学习绘画的技巧等等。
这时,你再去学习大模型,甚至让你去开发一个模型,你就能做到有地放矢。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。