又一个快准稳满血 DeepSeek R1 接口,一分钟上手,送个体验 key

经常有人问,有免费的 APP 可以用,为什么要自己去调大模型的 API 呢?这等于在问有『免费的公交车』可以坐,为什么要自己买车。

你控制 AI 就能让 AI 为你所用, AI 去控制你那就是灾难。相对于使用免费的应用( APP ),自己调用接口( API )有太多的好处。你会发现每个 token 都愿意交钱以后,AI 变得听话了,做事的效率也变高了,回复也变得更准确了。

打个比方,为什么自家做的手工面更香,但是超市买的面条他总是缺少纯正的天然面香呢?!你用别人层层包装的东西,你不知道他加了多少你根本不需要的东西,又悄悄拿掉了多少真正有用又费成本的东西。

而且在 AI 时代,人人都可以轻松学会写代码,因为编程的门槛大幅降低了。

目前 DeepSeek 太火,很多 API 接口被挤炸到无法正常使用。这里我推荐一下 openrouter 的接口,除了贵基本没有其他毛病。

**先送大家一个 openrouter / DeepSeek R1 的体验 key,**只能用于 ImTip 。

一、请先下载 开源 软件 I****mTip v6.8 以上版本,ImTip 主页:

https://imtip.aardio.com/


二、在 ImTip 『主界面』或『托盘菜单』点击打开**『AI 智能助手』**

三、然后在 AI 助手中点击设置配置接口参数为:

接口地址: https://openrouter.ai/api/v1``接口密钥(API Key): '\0\48\67\91\29\95\66\29\70\1\29\1\2\86\3\0\7\7\5\85\9\84\81\4\8\7\86\3\8\85\4\5\0\85\3\1\1\81\83\1\84\83\85\81\1\85\8\7\84\9\9\1\83\86\9\9\3\85\8\2\81\7\86\5\1\4\85\82\84\81\5\82\0\85\81'``模型 ID: deepseek/deepseek-r1

如下图:

openrouter 的联网搜索也是调用 exa.ai 家的接口。建议使用 ImTip 自带的联网搜索并且本地配置 exa.ai 接口。这样更方便,而且 exa.ai 注册就送 14 美金。

点击 ImTip 左下角的『联网搜索』按钮,配置如下图:

如果你只想简单一点使用 openrouter 自带的联网搜索,只要简单地在模型 ID 后面加一个 :online 后缀就可以了,如下:

deepseek/deepseek-r1:online

但是我建议你还是去申请一个 exa.ai 的接口,有了这个接口可以做的事就太多了。

这里提醒一下:偶尔没有出现推理过程,这只是缓存,并非模型是假的。只要回复质量过关,不必在乎少数情况下跳过了推理过程。

ImTip 比较方便的是提供了超级热键,引入了 aardio 开发环境的所有功能,提供了强大的编程扩展能力。在 AI 时代,不会写代码其实也可以轻松编程。例如在 aardio 里,只要按 F1 就可以调用 AI 自动写代码:

aardio 代码编辑器 F1 键代码补全与续写助手

其实除了 DeepSeek ,最近霸榜的 Gemini 2.0 也不错,例如 Gemini 2.0 flash 提供了惊人的 1MB 上下文,而且价格非常便宜。

另外 Gemini 2.0 pro 也非常不错,尤其对 aardio 的掌握程度已经大幅提升,基本与 DeepSeek , Claude 3.5 Sonnet 在一个水平,如果 Gemini 2.0 pro 开了联网搜索那么效果会更好。但是 Gemini 2.0 pro 的 API 接口目前只能免费体验,用不了几下就限流,建议到 Gemini 家的 AI Studio 上去体验(免费),最好是启用 Grounding with … Search 这个选项。

至于 ChatGPT 家的任何模型都不会写 aardio,即使开了联网搜索也是瞎写一气。所以 OpenAI 说 DeepSeek 抄他基本就是在自嗨。真正要区分 AI 的能力不是去比较再蠢的大模型都知道的一些网红知识,而是比较 aardio 这样偏门的知识。谁都知道的东西我们又何必去问 AI 呢?!

要注意 DeepSeek ,Claude 3.5 Sonnet 或者 Gemini 2.0 pro 都偶尔会写错 aardio 的 for 循环,不能因此就误认为这些大模型『不懂 aardio 』或者『懂得不多』,就好比你不能因为AI 分不清 9.9 与 9.11 谁大就总结出 AI 没有数学知识。我做过大量的测试,这几个大模型对 aardio 的知识掌握得都很全面,例如问 func(a=1,b=2) 为什么可以省略 {} 这种极偏门的 aardio 语法知识,这几个大模型都回复得很准确,解释得很细致。

之所以 for 循环会出这个问题是因为 aardio 是 C 系语法,而 for 循环是一个例外。AI 并不认为自己写错了,而是认为

for(i=1;10;1){}

是下面代码的略写法:

for(var i=1;i<10;i++){}

而 aardio 确实有大量提供兼容略写法的习惯。

这个问题 aardio 自带的 AI 助手与 AI 接口已经解决,如果使用其他第三方 AI 助手,那么将生成的代码使用 aardio 的『粘贴与更正』修正就可以了:

预览图片

另外再推荐一下字节最近推出的豆包 1.5 pro,豆包 1.5 pro 32 的价格比 DeepSeek 还要低,而且也提供上下文缓存,响应速度非常快,而且能力也很强。

豆包严重缺乏 aardio 的知识,但在 aardio 环境中使用并接入 aardio 知识库以后可以弥补这个问题。

如果不是用于 aardio ,我倒是强烈建议你试一下豆包 1.5 pro 。其实在一些场景下可能根本不需要耗时很久的推理模型。现在大家问一些很简单的问题都冲过去使用 DeepSeek R1 推理,其实这是一种不必要的资源浪费。

关于豆包接口的配置方法请参考我昨天写的文章。

我倒是希望 DeepSeek 能提供一个 32 K 上下文的版本,大多时候 32 K 足够用了。但 DeepSeek 64K 之前就出现过字多就卡顿的问题,实际上还没到 20K tokens 就卡得不行了。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值