2025年元旦,卫宁健康提出“AI Everywhere 全场景赋能”的发展方向,产品设计以AI为核心,将承担数据专家和AI专家的新角色。恰逢DeepSeek的创新大大加速了AI在医疗行业的应用。此次发布医疗大模型WiNGPT 2.8和医护智能助手WiNEX Copilot 2.1,全面对接DeepSeek,助力卫宁健康AI医疗突进之路进入快车道!
DeepSeek已然成为下一场AI变革的焦点。随着技术成熟迭代,模型竞相追赶,彼此鸿沟缩小,从“模型为先”到“应用为王”成为新的发展趋势。具有丰富应用场景的医疗领域为AI技术落地开辟了广阔天地。
2025年,卫宁健康产品设计将围绕AI智能化创新,实践“Copilot for Everything”行动计划,为用户提供AI增强医疗产品的同时,也在内部的代码开发、文档设计、运维知识服务查询等环节引入AI。从研发生产体系,到赋能智能医疗全场景,全速驱动生产力转型与突破。
卫宁健康 “Copilot for Everything”行动计划
在大语言模型快速发展的当下,卫宁健康人工智能医护助手WiNEX Copilot与医疗大语言模型WiNGPT持续迭代,近****日,正式发布WiNEX Copilot 2.1与WiNGPT 2.8版本,全面对接DeepSeek,进一步提升产品智能能力和生态共融。
01.
WiNEX Copilot 2.1全新特性
聚焦场景、模型、平台
在2024年发布的WiNEX Copilot 2.0基础上,最新迭代版WiNEX Copilot 2.1进一步聚焦场景深化、模型支持、平台能力三大方向,覆盖临床、护理、医技等关键医疗场景,贯穿诊前、诊中、诊后全流程,全面深化医疗临床与管理场景质控能力与移动端场景拓展。
WiNEX Copilot 产品架构
一、AI增强场景深化
场景质控效能再提升
在与CDSS深度融合后,WiNEX Copilot 2.1内置的风险预警叠加新模型能力,支持质控实时校验与实时预警,再度提升临床与管理类场景质控效能。例如电子病历书写、患者血液管理等场景的效率进一步提高,并降低错误率和资源的不合理使用。新版本新增Copilot智能费用管理助手,对患者就医全流程进行实时费用监管与决策,加强用费合规性。
AI从PC延伸到移动端
卫宁健康移动产品WiNEX MY搭载WiNEX Copilot 2.1,使AI能力不再局限于PC端,在移动场景中,医护有了“口袋里的AI”,例如语音查房、知识查询、流程管理等场景将变得更加智能和便利。本次移动端主要发布场景包含“移动知识助手”及“智能交接班”。
二、模型新增DeepSeek接入
卫宁健康新一代产品WiNEX以开放架构理念进行底层设计。这一架构下,WiNEX产品体系可灵活承载技术迭代更新,满足多元化产品生态的共赢共生。基于开放理念,WiNEX Copilot采用AI原生设计形态,支持对接各类大语言模型,并在统一平台管理。已支持Qwen2.5、LlaMA3、MiniMax、INF、Yi、InternLM3等。WiNEX Copilot 2.1版本在原有基础上,支持快速接入DeepSeek。
用户既可本地化部署,也可通过WiNEX Copilot 2.1远程访问互联网上的DeepSeek服务,Copilot 2.1均可对其进行管理和控制。我们目前支持DeepSeek-R1-32B的本地化部署,可与WiNGPT同时部署,用户可根据场景需求选择不同的模型。
模型新增DeepSeek-R1接入
接入DeepSeek-R1-32B的WiNEX Copilot 2.1近日已在北京大学人民医院部署上线,支持电子病历智能助手、语音查房等场景。
三、平台能力升级
底层模型要赋能医疗场景应用,真正发挥AI能力,往往需由平台在其间衔接和管理。完善平台的各项能力,是效率提升的一大关键。WiNEX Copilot 2.1在平台管理上进一步升级,优化提示词模板、功能组件以及AI Agent,使前端业务场景接入更高效。
· **提示词模板化:**通过扩展提示词模板,覆盖更丰富的业务场景。无论是复杂的推理分析,还是日常的文字提取处理,都可以灵活调用模板,快速生成精准的提示词。
**· AI Agent智能化:**全新的任务流框架,可采用大模型路径规划模式,根据任务需求智能选择最优路径,大幅提升执行准确率和效率。
**· 场景功能组件化:**为提升业务接入效率,我们将文书生成类及总结提取类功能进行组件化封装,兼容PC和移动端。用户可灵活调用功能组件,快速对接业务。
WiNEX Copilot 2.1 Agent 列表
02.
WiNGPT 2.8
借力DeepSeek强化模型
卫宁健康医疗大语言模型WiNGPT历经1.0、2.0到2024年发布的2.7版本,一路精进打磨,始终紧跟最前瞻的技术创新,基于最先进的开源大语言模型进行后训练,特别在医疗任务、信息抽取、数学能力等方面获得显著提升。
WiNGPT 2.7在通用能力和医疗能力上,已较前期版本有明显提升,并完成了多种国产CPU和GPU服务器的测试和验证工作。WiNGPT 2.8借力DeepSeek 的AI推理,成为更加全面、性能更强的医疗大模型。主要提升如下:
**· 指令数据量增加:**新增指令数据约95w,达227.8w;新增大量数学、代码等推理类型指令集;token长度达到8192。模型逻辑推理能力进一步提升。
**· 指令答案重构:**对指令数据中逻辑推理类指令答案范式进行重构,进一步提升答案质量。模型思考内容来自DeepSeek-V3、DeepSeek-R1、WiNGPT 2.7等模型产生的思维链,精简冗长思考内容,生成富含反思和验证机制的答案。整体指令重构率达70%,其中医疗指令重构达95%。
**· 接入DeepSeek-R1:**强化思维链(Chain of Thoughts)方法,同循证医学过程融合,提升医疗问题推理的准确性。在继承DeepSeek-R1本身能力的同时,提升医疗问题解决能力。其信息抽取能力在Zero-shot 的情况中,准确率达93%,质控具体场景准确率超过95%。
**· 联网智能检索:**实现对PubMed数据库的联网检索,针对研究问题查阅相关文献,所有回答内容都有参考文献支持。
**· 整体性能提升:**经过后训练的微调和对齐,WiNGPT 2.8整体性能较前一代提升约3%,在医疗场景中有约3%-5%的显著提升。
WiNGPT 联网 PubMed 搜索效果
03.
WiNGPT部署优化
适配国产信创硬件
大语言模型需要有效部署在医疗生产环境中,在实际技术落地中,批量化和工程化的部署必须充分考虑硬件资源要求、运维复杂性、安全性、隐私性等多方面因素。WiNGPT基于前期试点医院的部署应用情况,进行了针对性的优化提升。
**· 私有化部署优化:**实现模型文件加密、模型量化、推理性能优化等,满足医院对安全性和隐私性的要求。采用先进的推理框架和接口规范,提升部署灵活性和适配性。
**· 国产信创支持:**WiNGPT在多种国产硬件上开展了适配、推理部署和性能测试工作。目前已支持国内领先的硬件厂商如华为、海光、燧原、沐曦等算力芯片。通过适配多种国产硬件平台,WiNGPT兼容性和灵活性进一步增强,可满足不同场景需求。
WiNEX Copilot和WiNGPT的迭代之路仍在继续。新的一年,医疗AI浪潮势必加速到来,卫宁健康将继续深耕该领域,推动AI应用创新,拥抱领先的技术理念和最新AI成果,凭借自身深厚积累,快速融入医疗数智新生态,助力更多医疗机构乘势向上。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
