前言
Manus 2025年3月6日正式发布后,有团队仅用 3 小时复刻了 Manus 的功能,并将其命名为 OpenManus 开源。关于Manus技术实现方案的讨论,意外带火了MCP及其周边的开源项目,MCP 在中国的热度短时间内飙升至最高值,微信指数显示其热度值接近 400 万。BlenderMCP 项目上线仅 3 天,GitHub 标星数量就达到了 3.8k。
面对外界质疑时,迅速作出了回应。Manus联创的技术负责人季逸超辟谣:“我们确实没有采用MCP技术,但这并不意味着我们忽视了这项技术的价值。相反,我们在评估各种技术方案时,始终将用户体验和安全性放在首位。”
了解下MCP
MCP 就像 USB-C 一样,可以让不同设备能够通过相同的接口连接在一起。在没有 MCP 时,开发者需为每个数据源单独开发定制整合方式和 API,过程耗时且难以扩展。而 MCP 使 AI 应用能通过统一协议访问文件系统、数据库等资源,简化整合过程,提升 LLM 的使用体验。
MCP 是一种开放协议,全称为Model Context Protocol(模型上下文协议),由 Anthropic 在 2024 年 11 月发布。它旨在实现大型语言模型(LLM)与外部数据源和工具之间的无缝集成。
核心功能:
-
统一接口:MCP 提供了一种标准化的方式,使 LLM 能够以一致的方式连接各种数据源和工具。它类似于 AI 世界的“USB-C”接口。
-
上下文管理:通过定义标准化的接口和协议,MCP 能够动态维护 LLM 的对话上下文,确保多轮对话的连贯性和一致性。
-
安全性和灵活性:MCP 内置了安全机制,允许数据和工具的提供者控制资源访问,而无需将 API 密钥等敏感信息暴露给 LLM 提供商。
架构:
-
Host(主机):期望从服务器获取数据的人工智能应用,例如聊天机器人或 IDE。
-
Client(客户端):主机与服务器之间的桥梁,负责消息路由和协议协商。
-
Server(服务器):提供外部数据和工具的组件。
优势:
-
减少开发时间:开发者可以利用预构建的 MCP 服务器,而无需为每个数据源或工具构建自定义集成。
-
增强互操作性:使用 MCP 构建的应用程序可以与任何兼容的工具和数据源无缝协作。
-
模块化:调试、授权、审计等关注点可以标准化并重复使用。
为什么MCP会火
Function Call 是由 OpenAI 最早提出的。它允许大型语言模型(LLM)在生成响应时调用外部函数或服务,从而结合模型的语言理解能力与外部工具的精确性。
Function Call的局限性
-
需要大模型本身支持:大模型(如 OpenAI 的 GPT-4、Anthropic 的 Claude 等)需要在其架构中内置对 Function Call 的支持。这意味着模型必须能够理解如何调用外部函数,并处理函数调用的结果。
-
功能范围受限于大模型函数集合:大模型支持的 Function Call 功能范围取决于其开发团队的设计。如果模型没有内置对某个特定函数的支持,那么它就无法直接调用该函数。虽然 Function Call 提供了一定的灵活性,但它仍然受限于预定义的函数集合。如果需要调用新的工具或服务,可能需要模型开发团队扩展其支持的函数列表。
与 MCP 的对比
-
MCP(Model Context Protocol) 是一种开放协议,它提供了一种标准化的方式来实现 AI 模型与外部工具的交互。MCP 不依赖于特定的大模型,而是提供了一种通用的接口,任何支持 MCP 协议的模型都可以使用它来与外部工具交互。
-
Function Call 则是特定于某个大模型的实现,依赖于模型本身提供的接口和能力。
MCP使用实践
/以下示例分享自moreality blog
从 Claude 官网 下载 Claude for Desktop,选择 macOS 或 Windows。(目前 Linux 尚未支持 Claude for Desktop。)
为了添加一个 Arxiv 论文搜索工具,我们将为 Claude for Desktop 安装一个预构建的 mcp-papersearch Server。
更新配置文件后,您需要重新启动 Claude for Desktop。重新启动后,您应该会在输入框右下角看到一个锤子图标:
Case 01: 搜索近期的论文
问 Claude 一个简单的问题,比如搜索一下最近3天的 MoE Inference 相关论文
当弹出一个窗口,就表示 Claude 识别到了应该调用我们的 papersearch 来搜索。点击Allow后,papersearch被允许访问。
Case 02: 搜索指定的论文
比如我们要搜索 https://arxiv.org/abs/2308.12066 这篇论文,标题是「Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference」
提问:搜索和总结 https://arxiv.org/abs/2308.12066
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓